Telegram Group & Telegram Channel
​​Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке.
В 2020-х расклад сил в технологическом соревновании стало предельно просто оценивать. Революция «Глубокого обучения Больших моделей на Больших данных» превратила вычислительную мощность в ключевой фактор прогресса практически всех интеллектуально емких индустрий: от разработки новых лекарств до новых видов вооружений. А там, где задействован ИИ (а он уже почти всюду) вычислительная мощность, вообще, решает все.

Формула превосходства стала предельно проста:
• собери как можно больше данных;
• создай как можно более сложную (по числу параметров) модель;
• обучи модель как можно быстрее.
Тот, у кого будет «больше-больше-быстрее» имеет максимально высокие шансы выиграть в технологической гонке. А здесь все упирается в вычислительную мощность «железа» (HW) и алгоритмов (SW).

И при всем уважении к алгоритмам, но в этой паре их роль №2. Ибо алгоритм изобрести, скопировать или даже украсть все же проще, чем HW. «Железо» либо есть, либо его нет.
Это мы проходили еще в СССР. Это же стало даже более критическим фактором в эпоху «Глубокого обучения Больших моделей на Больших данных».

Вот два самых свежих примера.
1) Facebook раскрыл свою систему рекомендаций. Она построена на модели рекомендаций глубокого обучения (DLRM). Содержит эта модель 12 триллионов параметров и требует суммарного объема вычислений более 10 Petaflop/s-days.
2) Microsoft скоро продемонстрирует модель для ИИ с 1 триллионом параметров. Она работает на системе вычислительной производительности 502 Petaflop/s на 3072 графических процессорах.

Для сравнения, языковая модель GPT-2, разработанная OpenAI 2 года назад, поразила мир тем, что у нее было 1,5 миллиарда параметров. А GPT-3, вышедшая в 2020 имела уже 175 млрд. параметров.
Как видите, модели с триллионами параметров – уже данность. И чтобы их учить не годами, а днями, нужно «железо» сумасшедшей вычислительной мощности.

Т.е. сами видите, - есть «железо» - участвуй в гонке, нет «железа» - кури в сторонке.

На приложенной картинке свежие данные о размерах моделей и требуемой для них вычислительной мощности.
#HPC #ИИгонка



group-telegram.com/theworldisnoteasy/1262
Create:
Last Update:

​​Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке.
В 2020-х расклад сил в технологическом соревновании стало предельно просто оценивать. Революция «Глубокого обучения Больших моделей на Больших данных» превратила вычислительную мощность в ключевой фактор прогресса практически всех интеллектуально емких индустрий: от разработки новых лекарств до новых видов вооружений. А там, где задействован ИИ (а он уже почти всюду) вычислительная мощность, вообще, решает все.

Формула превосходства стала предельно проста:
• собери как можно больше данных;
• создай как можно более сложную (по числу параметров) модель;
• обучи модель как можно быстрее.
Тот, у кого будет «больше-больше-быстрее» имеет максимально высокие шансы выиграть в технологической гонке. А здесь все упирается в вычислительную мощность «железа» (HW) и алгоритмов (SW).

И при всем уважении к алгоритмам, но в этой паре их роль №2. Ибо алгоритм изобрести, скопировать или даже украсть все же проще, чем HW. «Железо» либо есть, либо его нет.
Это мы проходили еще в СССР. Это же стало даже более критическим фактором в эпоху «Глубокого обучения Больших моделей на Больших данных».

Вот два самых свежих примера.
1) Facebook раскрыл свою систему рекомендаций. Она построена на модели рекомендаций глубокого обучения (DLRM). Содержит эта модель 12 триллионов параметров и требует суммарного объема вычислений более 10 Petaflop/s-days.
2) Microsoft скоро продемонстрирует модель для ИИ с 1 триллионом параметров. Она работает на системе вычислительной производительности 502 Petaflop/s на 3072 графических процессорах.

Для сравнения, языковая модель GPT-2, разработанная OpenAI 2 года назад, поразила мир тем, что у нее было 1,5 миллиарда параметров. А GPT-3, вышедшая в 2020 имела уже 175 млрд. параметров.
Как видите, модели с триллионами параметров – уже данность. И чтобы их учить не годами, а днями, нужно «железо» сумасшедшей вычислительной мощности.

Т.е. сами видите, - есть «железо» - участвуй в гонке, нет «железа» - кури в сторонке.

На приложенной картинке свежие данные о размерах моделей и требуемой для них вычислительной мощности.
#HPC #ИИгонка

BY Малоизвестное интересное




Share with your friend now:
group-telegram.com/theworldisnoteasy/1262

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

I want a secure messaging app, should I use Telegram? Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations.
from ua


Telegram Малоизвестное интересное
FROM American