Telegram Group & Telegram Channel
перевод рецензии на книги (а сами книги — следующим сообщением):

Возможно, первый совет, который я получил от своего научного руководителя в аспирантуре по поводу занятий математикой, звучал так:
«Доказывать что-либо всегда легче, когда знаешь, что это правда».

Для меня это утверждение подчеркивает разницу между тем, как большинство из нас занимается математикой, и тем, как мы её представляем.

Когда мы публикуем доказательство, мы часто напоминаем фокусника, демонстрирующего свой последний трюк — гладкое, отточенное и красивое представление, которое (надеемся) впечатляет зрителей, вызывает у них восхищение зрелищем и уважение к нашему таланту. Мы движемся логическим крещендо от определений к леммам и затем к основной теореме, всегда следуя вперёд и вверх.

Однако на самом деле мы не занимаемся математикой таким образом. Наоборот, вероятно, точнее будет сказать, что мы начинаем с теоремы и работаем в обратном направлении:
«У меня есть результат, но я пока не знаю, как его получить».
— К. Ф. Гаусс


Все математики развивают своё интуитивное понимание задач и объектов, изучая примеры. Когда эта интуиция становится достаточно сильной, мы знаем результат ещё до того, как у нас есть его доказательство. А как только теорема сформулирована, мы приступаем к её доказательству. Можно утверждать, что математика давно устроена именно так: хотя она отличается от других областей знания своей доказательной строгостью, как практики мы не застрахованы от того, чтобы «испачкать руки» экспериментами — хотя мы обычно неохотно признаём это и стараемся, если возможно, скрыть.

Главный посыл этих двух книг заключается в том, что настало время принять эксперимент как часть математики, а не скрывать его. И теперь это возможно, потому что компьютер сделал широкомасштабный и систематический эксперимент реальностью.



group-telegram.com/tropicalgeometry/942
Create:
Last Update:

перевод рецензии на книги (а сами книги — следующим сообщением):

Возможно, первый совет, который я получил от своего научного руководителя в аспирантуре по поводу занятий математикой, звучал так:
«Доказывать что-либо всегда легче, когда знаешь, что это правда».

Для меня это утверждение подчеркивает разницу между тем, как большинство из нас занимается математикой, и тем, как мы её представляем.

Когда мы публикуем доказательство, мы часто напоминаем фокусника, демонстрирующего свой последний трюк — гладкое, отточенное и красивое представление, которое (надеемся) впечатляет зрителей, вызывает у них восхищение зрелищем и уважение к нашему таланту. Мы движемся логическим крещендо от определений к леммам и затем к основной теореме, всегда следуя вперёд и вверх.

Однако на самом деле мы не занимаемся математикой таким образом. Наоборот, вероятно, точнее будет сказать, что мы начинаем с теоремы и работаем в обратном направлении:
«У меня есть результат, но я пока не знаю, как его получить».
— К. Ф. Гаусс


Все математики развивают своё интуитивное понимание задач и объектов, изучая примеры. Когда эта интуиция становится достаточно сильной, мы знаем результат ещё до того, как у нас есть его доказательство. А как только теорема сформулирована, мы приступаем к её доказательству. Можно утверждать, что математика давно устроена именно так: хотя она отличается от других областей знания своей доказательной строгостью, как практики мы не застрахованы от того, чтобы «испачкать руки» экспериментами — хотя мы обычно неохотно признаём это и стараемся, если возможно, скрыть.

Главный посыл этих двух книг заключается в том, что настало время принять эксперимент как часть математики, а не скрывать его. И теперь это возможно, потому что компьютер сделал широкомасштабный и систематический эксперимент реальностью.

BY tropical saint petersburg


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/tropicalgeometry/942

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. 'Wild West' He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea.
from ua


Telegram tropical saint petersburg
FROM American