✅ یادگیری ماشین و مدلسازی بیزی در تحلیل علوم اعصاب، مدلهای آماری مختلفی برای تفسیر دادههای پیچیده و به دست آوردن بینشهای معنادار استفاده میشود. این مدلها را میتوان بهطور کلی به روشهای آمار کلاسیک و یادگیری ماشینی دستهبندی کرد که هر کدام اهداف مشخصی را در تحقیقات انجام میدهند.بخشهای زیر محبوبترین مدلهای آماری مورد استفاده در علوم اعصاب را تشریح میکند.
◀️آمار کلاسیک آزمون فرضیه صفر: روشهای رایج مورد استفاده شامل آزمونهای t و ANOVA هستند که به تعیین اهمیت اثرات مشاهدهشده در دادههای تصویربرداری عصبی کمک میکنند.
🟣تجزیه و تحلیل رگرسیون: این روشها روابط بین متغیرها را ارزیابی میکنند و بینشی در مورد عملکرد و ساختار مغز ارائه میکنند.
◀️رویکردهای یادگیری ماشینی یادگیری نظارت شده: تکنیکهایی مانند ماشینهای بردار پشتیبان (SVM)، درختهای تصمیمگیری و شبکههای عصبی اغلب برای کارهای طبقهبندی در علوم اعصاب استفاده میشوند.
🟣مدلسازی بیزی: این رویکرد عدم قطعیت را تخمین میزند و مستقیماً ویژگیهایی را از مجموعه دادهها استنباط میکند و آن را برای درک پیشرفت بیماری ارزشمند میسازد.
✅ در حالی که آمار کلاسیک چارچوبی قوی برای آزمایش فرضیهها ارائه میکند، یادگیری ماشینی انعطافپذیری و سازگاری را در تجزیه و تحلیل دادههای با ابعاد بالا ارائه میدهد که نشاندهنده رابطه مکمل بین این دو روش در تحقیقات علوم اعصاب است.
📎مقالهی بررسی ابزارهای آمار زیستی رایج در علوم اعصاب به بررسی جمعبندی رویکردهای مختلف در بیماریهای گوناگون میپردازد و امیدوار است که نقش بالقوه ابزارهای آمار زیستی در علوم اعصاب را معرفی کند.
⌛ یادگیری ماشین به عنوان یک روش برای ساخت مدلها و شناسایی همبستگیها میان ویژگیهای دادهها شناخته میشود. در این زمینه، تکنیکهایی مانند رگرسیون لجستیک، درختهای تصمیم، ماشینهای بردار پشتیبان (SVM)، جنگل تصادفی (RF) و شبکههای عصبی به عنوان رویکردهای رایج مورد استفاده قرار میگیرند. همچنین، مدلسازی بیزی به دلیل تواناییاش در برآورد ویژگیها بهطور مستقیم از مجموعه دادهها و نه از طریق توزیع نمونهبرداری، به عنوان روشی برای مدیریت عدم قطعیت مدلها مطرح است. این روشها در تشخیص و پیشرفت بیماریها در علوم اعصاب بسیار کارآمد بودهاند.
✅ یادگیری ماشین و مدلسازی بیزی در تحلیل علوم اعصاب، مدلهای آماری مختلفی برای تفسیر دادههای پیچیده و به دست آوردن بینشهای معنادار استفاده میشود. این مدلها را میتوان بهطور کلی به روشهای آمار کلاسیک و یادگیری ماشینی دستهبندی کرد که هر کدام اهداف مشخصی را در تحقیقات انجام میدهند.بخشهای زیر محبوبترین مدلهای آماری مورد استفاده در علوم اعصاب را تشریح میکند.
◀️آمار کلاسیک آزمون فرضیه صفر: روشهای رایج مورد استفاده شامل آزمونهای t و ANOVA هستند که به تعیین اهمیت اثرات مشاهدهشده در دادههای تصویربرداری عصبی کمک میکنند.
🟣تجزیه و تحلیل رگرسیون: این روشها روابط بین متغیرها را ارزیابی میکنند و بینشی در مورد عملکرد و ساختار مغز ارائه میکنند.
◀️رویکردهای یادگیری ماشینی یادگیری نظارت شده: تکنیکهایی مانند ماشینهای بردار پشتیبان (SVM)، درختهای تصمیمگیری و شبکههای عصبی اغلب برای کارهای طبقهبندی در علوم اعصاب استفاده میشوند.
🟣مدلسازی بیزی: این رویکرد عدم قطعیت را تخمین میزند و مستقیماً ویژگیهایی را از مجموعه دادهها استنباط میکند و آن را برای درک پیشرفت بیماری ارزشمند میسازد.
✅ در حالی که آمار کلاسیک چارچوبی قوی برای آزمایش فرضیهها ارائه میکند، یادگیری ماشینی انعطافپذیری و سازگاری را در تجزیه و تحلیل دادههای با ابعاد بالا ارائه میدهد که نشاندهنده رابطه مکمل بین این دو روش در تحقیقات علوم اعصاب است.
📎مقالهی بررسی ابزارهای آمار زیستی رایج در علوم اعصاب به بررسی جمعبندی رویکردهای مختلف در بیماریهای گوناگون میپردازد و امیدوار است که نقش بالقوه ابزارهای آمار زیستی در علوم اعصاب را معرفی کند.
⌛ یادگیری ماشین به عنوان یک روش برای ساخت مدلها و شناسایی همبستگیها میان ویژگیهای دادهها شناخته میشود. در این زمینه، تکنیکهایی مانند رگرسیون لجستیک، درختهای تصمیم، ماشینهای بردار پشتیبان (SVM)، جنگل تصادفی (RF) و شبکههای عصبی به عنوان رویکردهای رایج مورد استفاده قرار میگیرند. همچنین، مدلسازی بیزی به دلیل تواناییاش در برآورد ویژگیها بهطور مستقیم از مجموعه دادهها و نه از طریق توزیع نمونهبرداری، به عنوان روشی برای مدیریت عدم قطعیت مدلها مطرح است. این روشها در تشخیص و پیشرفت بیماریها در علوم اعصاب بسیار کارآمد بودهاند.
The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site.
from us