group-telegram.com/abstractDL/152
Last Update:
Language Modeling with Pixels
А что будет, если учить нейронную сеть понимать текст по скриншотам? Оказалось, что такая модель будет работать ничуть не хуже, чем BERT, и, к тому же, ещё и понимать мультсимвольный шифр:
ᗪ🝗🝗尸 ㇄🝗闩尺𝓝讠𝓝Ꮆ.
Авторы предложили вместо дискретных токенов предсказывать пиксели буквенных символов. Подход очень похож на смесь BERT и ViT-MAE — сначала обучающие тексты рендерятся в изображение, а затем маскируются и восстанавливаются разные его куски. Этот подход позволил избавиться от так называемого vocabulary bottleneck — то есть нет необходимости хранить огромное количество эмбеддингов для десятков тысяч токенов и вычислять дорогостоящий софтмакс.
В итоге, модель демонстрирует сравнимый с бертом перформанс и гораздо более устойчива к adversarial атакам.
P.S. На картинке показана работа промежуточного чекпоинта модели, когда она научилась декодить замаскированный текст, но ещё не до конца.
Статья, GitHub, Hugging Face
BY AbstractDL
Share with your friend now:
group-telegram.com/abstractDL/152