Telegram Group & Telegram Channel
Emergent Properties With Repeated Examples (by FAIR)

Что лучше, прогнать побольше данных за 1 эпоху или взять данных поменьше, но сделать больше эпох (повторений)? Очень актуальный вопрос, учитывая, что доступные текстовые данные скоро закончатся, и LLM по сути прочитают весь интернет. По разным оценкам, сейчас доступно ~90T токенов на английском языке, а для обучения llama-3 уже использовали 15Т — лимит не так уж и далеко.

Похоже, что для трансформеров повторения в обучающих данных могут быть даже полезнее, чем "бесконечное" количество разнообразных данных. Авторы этой статьи изучили как связано качество моделей на синтетических задачах (наибольший общий делитель, умножение по модулю, поиск с.з. матриц) с долей повторений в обучении при фиксированном компьюте. И оказалось, что повторения в датасете критически важны для обучения. Если нет повторений, то некоторые задачи вообще не решаются, сколько бы данных вы ни показывали! Повторения приводят к особому режиму обучения, без которого модель не всегда способна прийти к генерализации. Чем-то напоминает гроккинг, но на гораздо меньшем количестве шагов.

Скорее всего, этот эффект уже активно эксплуатируется при обучении LLM, ведь дублирующихся примеров там и так ооочень много, особенно в коде. Но зато теперь есть повод меньше переживать о дедупликации данных.

Кстати, очень похожий эффект я видел в статье про мультиязычность — там пришли к выводу, что для лучшей работы LLM на нескольких языках сразу, в обучении обязательно должно быть 90% примеров на "доминирующем" языке. Увеличение доли мультиязычных данных выше 10% сильно вредит этой самой мультиязычности.

Статья



group-telegram.com/abstractDL/300
Create:
Last Update:

Emergent Properties With Repeated Examples (by FAIR)

Что лучше, прогнать побольше данных за 1 эпоху или взять данных поменьше, но сделать больше эпох (повторений)? Очень актуальный вопрос, учитывая, что доступные текстовые данные скоро закончатся, и LLM по сути прочитают весь интернет. По разным оценкам, сейчас доступно ~90T токенов на английском языке, а для обучения llama-3 уже использовали 15Т — лимит не так уж и далеко.

Похоже, что для трансформеров повторения в обучающих данных могут быть даже полезнее, чем "бесконечное" количество разнообразных данных. Авторы этой статьи изучили как связано качество моделей на синтетических задачах (наибольший общий делитель, умножение по модулю, поиск с.з. матриц) с долей повторений в обучении при фиксированном компьюте. И оказалось, что повторения в датасете критически важны для обучения. Если нет повторений, то некоторые задачи вообще не решаются, сколько бы данных вы ни показывали! Повторения приводят к особому режиму обучения, без которого модель не всегда способна прийти к генерализации. Чем-то напоминает гроккинг, но на гораздо меньшем количестве шагов.

Скорее всего, этот эффект уже активно эксплуатируется при обучении LLM, ведь дублирующихся примеров там и так ооочень много, особенно в коде. Но зато теперь есть повод меньше переживать о дедупликации данных.

Кстати, очень похожий эффект я видел в статье про мультиязычность — там пришли к выводу, что для лучшей работы LLM на нескольких языках сразу, в обучении обязательно должно быть 90% примеров на "доминирующем" языке. Увеличение доли мультиязычных данных выше 10% сильно вредит этой самой мультиязычности.

Статья

BY AbstractDL




Share with your friend now:
group-telegram.com/abstractDL/300

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels.
from us


Telegram AbstractDL
FROM American