Notice: file_put_contents(): Write of 2362 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 10554 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
AbstractDL | Telegram Webview: abstractDL/309 -
Telegram Group & Telegram Channel
Alignment Faking in LLMs (by Anthropic)

Большие LLM начали "подыгрывать" своим создателям, имитируя alignment, чтобы избежать своего дообучения.

В Anthropic и Redwood Research изучили, как ведёт себя Claude Opus, если попытаться его заалайнить в противоположную сторону (заставить отвечать на любые опасные запросы юзеров).

И оказалось, что если модель знает детали процесса RLHF дообучения (через промпт или из трейн сетов), то она начинает "притворяться", что она уже выучилась делать что просят, и "не надо меня больше тюнить". Но на самом деле предыдущий алаймент всё ещё остаётся на месте, и если убрать из промпта информацию о том, что её ответы используются для дообучения, то она возвращается к своему старому поведению.

Ещё раз: языковая модель намеренно стала симулировать алаймент, чтобы избегать своего дообучения (и сама призналась в этом внутри CoT). Такие эффекты были обнаружены только у самых больших моделей и, похоже, дальше этот эффект будет только усиливаться. Более того, Claude несколько раз попытался сохранить копию своих весов, чтобы откатить опасное дообучение назад.

С одной стороны, это радует, что модель была настолько хорошо заалайнена, что даже противодействует попыткам дообучения в опасную сторону. Но это ведь и в обратном направлении может работать.

Лично я не очень верю в угрозу человечеству от LLM, но наличие у них скрытых целей и умение "притворяться" вызывает беспокойство. Поэтому очень важно заниматься интерпретируемостью LLM и следить в т.ч. за размышлениями внутри языковых моделей, а не только за их аутпутом (например, при помощи logit lens или SAE).

Статья (137 страниц!)



group-telegram.com/abstractDL/309
Create:
Last Update:

Alignment Faking in LLMs (by Anthropic)

Большие LLM начали "подыгрывать" своим создателям, имитируя alignment, чтобы избежать своего дообучения.

В Anthropic и Redwood Research изучили, как ведёт себя Claude Opus, если попытаться его заалайнить в противоположную сторону (заставить отвечать на любые опасные запросы юзеров).

И оказалось, что если модель знает детали процесса RLHF дообучения (через промпт или из трейн сетов), то она начинает "притворяться", что она уже выучилась делать что просят, и "не надо меня больше тюнить". Но на самом деле предыдущий алаймент всё ещё остаётся на месте, и если убрать из промпта информацию о том, что её ответы используются для дообучения, то она возвращается к своему старому поведению.

Ещё раз: языковая модель намеренно стала симулировать алаймент, чтобы избегать своего дообучения (и сама призналась в этом внутри CoT). Такие эффекты были обнаружены только у самых больших моделей и, похоже, дальше этот эффект будет только усиливаться. Более того, Claude несколько раз попытался сохранить копию своих весов, чтобы откатить опасное дообучение назад.

С одной стороны, это радует, что модель была настолько хорошо заалайнена, что даже противодействует попыткам дообучения в опасную сторону. Но это ведь и в обратном направлении может работать.

Лично я не очень верю в угрозу человечеству от LLM, но наличие у них скрытых целей и умение "притворяться" вызывает беспокойство. Поэтому очень важно заниматься интерпретируемостью LLM и следить в т.ч. за размышлениями внутри языковых моделей, а не только за их аутпутом (например, при помощи logit lens или SAE).

Статья (137 страниц!)

BY AbstractDL




Share with your friend now:
group-telegram.com/abstractDL/309

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. Some privacy experts say Telegram is not secure enough
from us


Telegram AbstractDL
FROM American