Типы данных или как не ошибиться с выбором критерия
Привет, коллега!
😐 В самом начале разговора об анализе данных стоит обсудить какие данные вообще бывают. Потому что от этого будет зависеть выбор критерия для сравнения твоих экспериментальных групп.
В целом данные бывают количественные и качественные. Количественные данные можно упорядочить и с ними можно совершать различные арифметические действия. Качественные данные описывают свойства объекта и тут уж как говориться, ни отнять, ни прибавить.
В свою очередь количественные данные делятся на непрерывные и дискретные. 🟡 Непрерывные данные могут быть не целыми числами и их можно дробить настолько, насколько нам позволят наши приборы. Например, длина крыла подпотолочного лампонюха может быть 1 метр, может 1,12 м, может 1,12237467 метра и так далее. 🟡 Дискретные же данные не могут принимать нецелочисленные значения. Как правило, это количество чего-то, например, 5 студентов в потоковой аудитории. А вот полтора землекопа уже быть не может.
⭐️ В зависимости от типа данных ты будешь выбирать параметрические или непараметрические критерии для анализа. В случае дискретных количественных данных - всегда используй непараметрические критерии. Сколько же студентов и аспирантов посыпались на сравнении количества клеток t-критерием Стьюдента... Не становись одним из них 😇
Качественные данные описывают некоторое качество объекта и бывают ранговыми и номинальными. 🟡 Ранговые данные можно перепутать с дискретными количественными, так как они тоже только целочисленные, но при этом с ними бессмысленно проводить какие-то арифметические действия. Например, пятибалльная шкала ураганов. Находятся, конечно, извращенцы, считающие средний бал ураганов по региону. А потом эти умельцы готовят инфраструктуру к средним 3 баллам, которая летит к чертям собачьим в 5 баллов. 🟡 Номинальные данные описывают качество объекта, который нельзя упорядочить. Например, цвет глаз или предпочтения в музыкальных жанрах 👻
🥳 Для тех, кто уже немного искушён в статистике я принесла схемки 👇, которые помогут выбрать правильный критерий для анализа. А тем, кто только начинает этот путь вместе со мной - рекомендую добавить картинки в сохранёнки, ведь мы ещё к ним вернёмся.
Типы данных или как не ошибиться с выбором критерия
Привет, коллега!
😐 В самом начале разговора об анализе данных стоит обсудить какие данные вообще бывают. Потому что от этого будет зависеть выбор критерия для сравнения твоих экспериментальных групп.
В целом данные бывают количественные и качественные. Количественные данные можно упорядочить и с ними можно совершать различные арифметические действия. Качественные данные описывают свойства объекта и тут уж как говориться, ни отнять, ни прибавить.
В свою очередь количественные данные делятся на непрерывные и дискретные. 🟡 Непрерывные данные могут быть не целыми числами и их можно дробить настолько, насколько нам позволят наши приборы. Например, длина крыла подпотолочного лампонюха может быть 1 метр, может 1,12 м, может 1,12237467 метра и так далее. 🟡 Дискретные же данные не могут принимать нецелочисленные значения. Как правило, это количество чего-то, например, 5 студентов в потоковой аудитории. А вот полтора землекопа уже быть не может.
⭐️ В зависимости от типа данных ты будешь выбирать параметрические или непараметрические критерии для анализа. В случае дискретных количественных данных - всегда используй непараметрические критерии. Сколько же студентов и аспирантов посыпались на сравнении количества клеток t-критерием Стьюдента... Не становись одним из них 😇
Качественные данные описывают некоторое качество объекта и бывают ранговыми и номинальными. 🟡 Ранговые данные можно перепутать с дискретными количественными, так как они тоже только целочисленные, но при этом с ними бессмысленно проводить какие-то арифметические действия. Например, пятибалльная шкала ураганов. Находятся, конечно, извращенцы, считающие средний бал ураганов по региону. А потом эти умельцы готовят инфраструктуру к средним 3 баллам, которая летит к чертям собачьим в 5 баллов. 🟡 Номинальные данные описывают качество объекта, который нельзя упорядочить. Например, цвет глаз или предпочтения в музыкальных жанрах 👻
🥳 Для тех, кто уже немного искушён в статистике я принесла схемки 👇, которые помогут выбрать правильный критерий для анализа. А тем, кто только начинает этот путь вместе со мной - рекомендую добавить картинки в сохранёнки, ведь мы ещё к ним вернёмся.
Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. Telegram Messenger Blocks Navalny Bot During Russian Election Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%.
from us