Telegram Group & Telegram Channel
#статистика_для_котиков

Типы данных или как не ошибиться с выбором критерия

Привет, коллега!

😐 В самом начале разговора об анализе данных стоит обсудить какие данные вообще бывают. Потому что от этого будет зависеть выбор критерия для сравнения твоих экспериментальных групп.

В целом данные бывают количественные и качественные. Количественные данные можно упорядочить и с ними можно совершать различные арифметические действия. Качественные данные описывают свойства объекта и тут уж как говориться, ни отнять, ни прибавить.

В свою очередь количественные данные делятся на непрерывные и дискретные.
🟡 Непрерывные данные могут быть не целыми числами и их можно дробить настолько, насколько нам позволят наши приборы. Например, длина крыла подпотолочного лампонюха может быть 1 метр, может 1,12 м, может 1,12237467 метра и так далее.
🟡 Дискретные же данные не могут принимать нецелочисленные значения. Как правило, это количество чего-то, например, 5 студентов в потоковой аудитории. А вот полтора землекопа уже быть не может.

⭐️ В зависимости от типа данных ты будешь выбирать параметрические или непараметрические критерии для анализа. В случае дискретных количественных данных - всегда используй непараметрические критерии. Сколько же студентов и аспирантов посыпались на сравнении количества клеток t-критерием Стьюдента... Не становись одним из них 😇

Качественные данные описывают некоторое качество объекта и бывают ранговыми и номинальными.
🟡 Ранговые данные можно перепутать с дискретными количественными, так как они тоже только целочисленные, но при этом с ними бессмысленно проводить какие-то арифметические действия. Например, пятибалльная шкала ураганов. Находятся, конечно, извращенцы, считающие средний бал ураганов по региону. А потом эти умельцы готовят инфраструктуру к средним 3 баллам, которая летит к чертям собачьим в 5 баллов.
🟡 Номинальные данные описывают качество объекта, который нельзя упорядочить. Например, цвет глаз или предпочтения в музыкальных жанрах 👻

🥳 Для тех, кто уже немного искушён в статистике я принесла схемки 👇, которые помогут выбрать правильный критерий для анализа. А тем, кто только начинает этот путь вместе со мной - рекомендую добавить картинки в сохранёнки, ведь мы ещё к ним вернёмся.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ad_research/50
Create:
Last Update:

#статистика_для_котиков

Типы данных или как не ошибиться с выбором критерия

Привет, коллега!

😐 В самом начале разговора об анализе данных стоит обсудить какие данные вообще бывают. Потому что от этого будет зависеть выбор критерия для сравнения твоих экспериментальных групп.

В целом данные бывают количественные и качественные. Количественные данные можно упорядочить и с ними можно совершать различные арифметические действия. Качественные данные описывают свойства объекта и тут уж как говориться, ни отнять, ни прибавить.

В свою очередь количественные данные делятся на непрерывные и дискретные.
🟡 Непрерывные данные могут быть не целыми числами и их можно дробить настолько, насколько нам позволят наши приборы. Например, длина крыла подпотолочного лампонюха может быть 1 метр, может 1,12 м, может 1,12237467 метра и так далее.
🟡 Дискретные же данные не могут принимать нецелочисленные значения. Как правило, это количество чего-то, например, 5 студентов в потоковой аудитории. А вот полтора землекопа уже быть не может.

⭐️ В зависимости от типа данных ты будешь выбирать параметрические или непараметрические критерии для анализа. В случае дискретных количественных данных - всегда используй непараметрические критерии. Сколько же студентов и аспирантов посыпались на сравнении количества клеток t-критерием Стьюдента... Не становись одним из них 😇

Качественные данные описывают некоторое качество объекта и бывают ранговыми и номинальными.
🟡 Ранговые данные можно перепутать с дискретными количественными, так как они тоже только целочисленные, но при этом с ними бессмысленно проводить какие-то арифметические действия. Например, пятибалльная шкала ураганов. Находятся, конечно, извращенцы, считающие средний бал ураганов по региону. А потом эти умельцы готовят инфраструктуру к средним 3 баллам, которая летит к чертям собачьим в 5 баллов.
🟡 Номинальные данные описывают качество объекта, который нельзя упорядочить. Например, цвет глаз или предпочтения в музыкальных жанрах 👻

🥳 Для тех, кто уже немного искушён в статистике я принесла схемки 👇, которые помогут выбрать правильный критерий для анализа. А тем, кто только начинает этот путь вместе со мной - рекомендую добавить картинки в сохранёнки, ведь мы ещё к ним вернёмся.

BY АДовый рисёрч




Share with your friend now:
group-telegram.com/ad_research/50

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. Some privacy experts say Telegram is not secure enough There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine.
from us


Telegram АДовый рисёрч
FROM American