Telegram Group & Telegram Channel
#статистика_для_котиков

Она говорила, что любит нормальных, но выбирала с эксцессом и асимметрией

Привет, коллега!

Пока я готовлю очередной длиннопост про призму (для вновьприбывших первая и вторая части), решила кратенько рассказать о таких параметрах как асимметрия (skewness) и эксцесс (kurtosis), отражающих форму распределения данных.

Итак, коэффициент асимметрии - это мера асимметрии распределения вероятностей случайной величины относительно её среднего значения. Если он равен нулю, то распределение симметрично относительно центра (например, нормальное распределение или распределение Стьюдента).

Однако, очень часто распределение ассиметрично, например, если посмотреть на распределение зарплат, то можно увидеть, что труд большей части людей не слишком высоко ценится, а вот высокие доходы имеет лишь небольшая часть населения. Собственно вот такой длинный хвост справа будет выражаться в положительном коэффициенте асимметрии и чем больше значение - тем больше перекос.

Отрицательный коэффициент асимметрии будет при длинном хвосте слева и большей вероятности получить высокие значения случайной величины. Например, на одном из моих предметах большинство студентов набирает 70-90 баллов из 100 за эссе, потому что они очень умные, умеют искать литературу и правильно оформлять работу. Но бывает попадаются редкие работы, бездумно сгенерированные нейросетками и вот они создают длинный левый хвост у распределения оценок.

🤔 Странные, конечно, примеры получились, на грустное распределение зарплат коэффициент асимметрии положительный, а на умненьких студентов - отрицательный

Теперь про второй параметр, коэффициент эксцесса. Он отражает насколько "острая" вершина у распределения. UPD: есть поправочка из комментариев. Вообще есть приколы с его расчётом и одна из формул была предложена Пирсоном. По ней у нормального распределения эксцесс равен 3. Но чаще используют избыточный эксцесс (excess kurtosis), получаемый вычитанием тройки, причём называют его также просто коэффициентом эксцесса (например, в призме это так).

Распределение близкое к нормальному имеет избыточный эксцесс равный 0 и называется мезокуртическим распределением. Если коэффициент отрицательный, то распределение имеет более распластанную форму и называется платикуртическим. Для биологических данных небольшие выборки из неоднородной генеральной совокупности чаще всего будут иметь именно такое распределение, поскольку изначально разброс большой, а измерений для высокого пика нормального распределения может просто не хватать. Попробуй измерить рост у 5 своих друзей и посчитать коэффициент эксцесса.

Избыточный эксцесс больше 0 характерен для лептокуртического распределения. В этом случае распределение имеет высокий и острый пик, но в отличие от распределения с малым стандартными отклонением, в нём присутствуют значения сильно отклоняющиеся от среднего. Возвращаясь к умным студентам с высокими баллами за эссе: из-за читеров с нейросетями распределение получается не нормальным с малым разбросом, а лептокуртическим. Кстати, картинку распределением оценок прошлого года и рассчитанными коэффициентами ассиметрии и эксцесса скину в комментарии.

Пока читала литературу для этого поста неоднократно наталкивалась на информацию о том, что лептокуртическое распределение доходности рынка означает высокие риски при инвестировании, а вот платикурическое распределение более безопасно. Пока что моя единственная инвестиция - это запасы жирочка на случай голода, но может кому-то эта информация будет полезной.

И в заключении хочу признаться: я написала весь этот текст только чтобы запостить картинку с котиками, которая поднимает мне настроение каждый раз, когда я её встречаю. Надеюсь, теперь и тебе тоже 🙂
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ad_research/854
Create:
Last Update:

#статистика_для_котиков

Она говорила, что любит нормальных, но выбирала с эксцессом и асимметрией

Привет, коллега!

Пока я готовлю очередной длиннопост про призму (для вновьприбывших первая и вторая части), решила кратенько рассказать о таких параметрах как асимметрия (skewness) и эксцесс (kurtosis), отражающих форму распределения данных.

Итак, коэффициент асимметрии - это мера асимметрии распределения вероятностей случайной величины относительно её среднего значения. Если он равен нулю, то распределение симметрично относительно центра (например, нормальное распределение или распределение Стьюдента).

Однако, очень часто распределение ассиметрично, например, если посмотреть на распределение зарплат, то можно увидеть, что труд большей части людей не слишком высоко ценится, а вот высокие доходы имеет лишь небольшая часть населения. Собственно вот такой длинный хвост справа будет выражаться в положительном коэффициенте асимметрии и чем больше значение - тем больше перекос.

Отрицательный коэффициент асимметрии будет при длинном хвосте слева и большей вероятности получить высокие значения случайной величины. Например, на одном из моих предметах большинство студентов набирает 70-90 баллов из 100 за эссе, потому что они очень умные, умеют искать литературу и правильно оформлять работу. Но бывает попадаются редкие работы, бездумно сгенерированные нейросетками и вот они создают длинный левый хвост у распределения оценок.

🤔 Странные, конечно, примеры получились, на грустное распределение зарплат коэффициент асимметрии положительный, а на умненьких студентов - отрицательный

Теперь про второй параметр, коэффициент эксцесса. Он отражает насколько "острая" вершина у распределения. UPD: есть поправочка из комментариев. Вообще есть приколы с его расчётом и одна из формул была предложена Пирсоном. По ней у нормального распределения эксцесс равен 3. Но чаще используют избыточный эксцесс (excess kurtosis), получаемый вычитанием тройки, причём называют его также просто коэффициентом эксцесса (например, в призме это так).

Распределение близкое к нормальному имеет избыточный эксцесс равный 0 и называется мезокуртическим распределением. Если коэффициент отрицательный, то распределение имеет более распластанную форму и называется платикуртическим. Для биологических данных небольшие выборки из неоднородной генеральной совокупности чаще всего будут иметь именно такое распределение, поскольку изначально разброс большой, а измерений для высокого пика нормального распределения может просто не хватать. Попробуй измерить рост у 5 своих друзей и посчитать коэффициент эксцесса.

Избыточный эксцесс больше 0 характерен для лептокуртического распределения. В этом случае распределение имеет высокий и острый пик, но в отличие от распределения с малым стандартными отклонением, в нём присутствуют значения сильно отклоняющиеся от среднего. Возвращаясь к умным студентам с высокими баллами за эссе: из-за читеров с нейросетями распределение получается не нормальным с малым разбросом, а лептокуртическим. Кстати, картинку распределением оценок прошлого года и рассчитанными коэффициентами ассиметрии и эксцесса скину в комментарии.

Пока читала литературу для этого поста неоднократно наталкивалась на информацию о том, что лептокуртическое распределение доходности рынка означает высокие риски при инвестировании, а вот платикурическое распределение более безопасно. Пока что моя единственная инвестиция - это запасы жирочка на случай голода, но может кому-то эта информация будет полезной.

И в заключении хочу признаться: я написала весь этот текст только чтобы запостить картинку с котиками, которая поднимает мне настроение каждый раз, когда я её встречаю. Надеюсь, теперь и тебе тоже 🙂

BY АДовый рисёрч





Share with your friend now:
group-telegram.com/ad_research/854

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform.
from us


Telegram АДовый рисёрч
FROM American