Telegram Group Search
🌟 ToolOrchestra: буст ИИ-потенциала за счет координации моделей и инструментов.

NVIDIA совместно с Университетом Гонконга разработала ToolOrchestra - методику обучения дирижеров для ИИ-агентов, и выпустила на ее основе модель Orchestrator-8B.

Это модель, базирующаяся на архитектуре Qwen3 предназначена для оркестрации других моделей и инструментов. Вместо того чтобы решать задачу в одиночку, модель чередует этапы рассуждения с вызовом внешних инструментов.

В ее арсенале поисковые движки, интерпретаторы кода и другие LLM, от узкоспециализированных математических до универсальных гигантов Claude и Llama-Nemotron.

Обучение проводилось с помощью GRPO, который поощрял модель не только за точность, но и за экономическую эффективность.

В результате решение получилось в 2,5 раза быстрее и на 70% дешевле в эксплуатации, чем использование одной лишь флагманской модели для всех этапов задачи, а сама Orchestrator-8B набрала 37,1% в сложнейшем бенчмарке Humanity's Last Exam , обойдя GPT-5 (35,1%).


📌Лицензирование кода : Apache 2.0 License.

📌Лицензирование модели: NVIDIA License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Orchestrator #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
65👍34🔥11🤬2🦄2❤‍🔥1
Media is too big
VIEW IN TELEGRAM
✔️ ШАД Яндекса начал обучать ученых.

В Школе анализа данных, где готовят специалистов по ИИ, началось обучение по применению ИИ в естественно-научных исследованиях. На программу подали заявки ученые из 37 регионов - больше всего запросов получили от экспертов в областях физики, медицины и химии. В итоге зачислили 50 молодых исследователей: от магистрантов до кандидатов наук из Москвы, Петербурга, Уфы, Иркутска, Владивостока и Екатеринбурга.

Участники изучают основы ИИ и сразу применяют инструменты в своих задачах. С каждой командой работает эксперт ШАДа: помогает выбрать методы и спланировать эксперимент. Если проекту нужны тяжелые вычисления, подключаются мощности Yandex Cloud.

✔️ ИИ научили считывать активность скрытых мышц кисти по видео.

Команда из Institute of Science Tokyo анонсировала фреймворк PianoKPM Net, способный с высокой точностью определять активность мышц рук без использования нательных датчиков. Обычно для этого требуется инвазивная и дорогая электромиография, но новая архитектура реконструирует паттерны мышечных сокращений, анализируя только видеозапись.

В основе системы - уникальный датасет, собранный на базе 12 часов игры профессиональных пианистов, где визуальные данные синхронизированы с реальными сигналами мышц. Технология превращает обычную камеру в диагностический инструмент, что важно для реабилитационной медицины, спортивной аналитики и создания продвинутых интерфейсов «человек-компьютер». Авторы планируют выложить датасет и модель в открытый доступ.
techxplore.com

✔️ ИИ-проект Джеффа Безоса купил стартап General Agents.

Project Prometheus поглотил разработчика агентного ИИ General Agents. Сделка прошла в закрытом режиме еще летом и сопровождалась переходом команды инженеров из DeepMind и Tesla в структуру Prometheus. Цель Prometheus: создание ИИ-систем для поддержки сложных производств автомобилестроения и космической отрасли.

Главный актив General Agents - технология Ace для автономного управления интерфейсами и приложениями. Хотя изначально Ace создавался для автоматизации рутинны на ПК, в рамках Prometheus эти наработки, судя по всему, будут масштабированы для индустриальных сценариев.
wired.com

✔️ OpenAI и Google резко ограничили лимиты в Sora и Nano Banana Pro.

Глава направления Sora в OpenAI Билл Пиблз сообщил, что бесплатные аккаунты теперь ограничены всего 6 видеогенерациями в сутки, так как текущие графические процессоры буквально плавятся от запросов. Это ограничение не выглядит временным: компания прямо предлагает докупать генерации по мере необходимости, хотя условия для подписчиков ChatGPT Plus и Pro пока остались прежними.

Google приняла аналогичные меры, урезав бесплатный доступ к инструменту Nano Banana Pro до 2 изображений в день. Техгигант предупредил, что лимиты могут меняться динамически и без уведомлений. Кроме того, под ограничения попал и доступ бесплатных пользователей к модели Gemini 3 Pro.
theverge.com

✔️ Perplexity добавила функцию долгосрочной памяти.

ИИ-поисковик получил функцию "persistent memory", которая позволяет запоминать предпочтения, интересы и детали предыдущих диалогов. Теперь система автоматически создает "постоянный контекст" пользователя, а ответы становятся персонализированными и требуют меньше уточняющих запросов.

Perplexity извлекает факты из хранилища памяти и напрямую использует их при формировании ответа. Этот контекстный слой работает поверх любой выбранной модели без потери накопленных знаний о пользователе. Функция полностью управляема: сбор данных можно отключить в настройках, а в режиме инкогнито история не сохраняется.
perplexity.ai

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
58👍26🔥8😁4🦄4
🙂 Идея для стартапа: GPU-Сауна

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
2😁17831🤣13😐7👍4👨‍💻3🙊3🦄21🥰1
✍️ ML Global Recap: итоги ключевых научных конференций года

11 декабря Яндекс проводит встречу для тех, кто следит за трендами в машинном обучении. Эксперты расскажут, что важного происходило в этом году на главных мировых конференциях и что нас ждет дальше.

Ребята знают, о чем говорят. Команда в курсе всех ключевых событий отрасли: NeurIPS, ICLR, ACL, Interspeech, CIKM и ACM RecSys – весь год по косточкам разбирали тренды и статьи с мероприятий. А на некоторых даже выступали. Например, на ACM RecSys представили устный доклад по Yambda (попасть в oral секцию на конференцию такого уровня – задача со звездочкой)

Значимые выводы с конференций и основные тенденции представят руководители ключевых команд Яндекса.

🎯 Все детали тут.
16👌11🤣5👍3💋2
⚡️ В Ai Toolkit появилась поддержка обучения LoRA для Z-Image Turbo.

Ostris, разработчик популярного пакета для обучения диффузионных моделей добавил поддержку обучения для Z-Image Turbo с помощью De-Distill адаптера.

AI Toolkit — это универсальный набор инструментов для обучения диффузионных моделей на потребительском оборудовании. Он может запускаться как в GUI, так и в командной строке. Набор разработан так, чтобы быть простым в использовании, но при этом обладать всеми возможными функциями.


По первым тестам, обучение возможно на 12+ VRAM, а обучение персонажа на 17 изображениях длительностью 3000 шагов на RTX 5090 занимает примерно полтора часа.

Подробный гайд по процессу автор тулкита обещает выпустить в ближайшие дни.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
139🔥15🥰5🦄3👍2
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Unitree R1 и G1 демонстрируют свои навыки на одной сцене

Выбери своего БОЙЦА:

❤️ Новый, более доступный и компактный R1
или
🔥 Мощный и уже зарекомендовавший себя на рынке G1, который остаётся флагманом линейки.

@ai_machinelearning_big_data

#ai #robots
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥132👍2822😨16🦄2😁1
⚡️ Как линейная регрессия помогает решать задачи в AI и аналитике

Недавно увидел крутой разбор линейной регрессии — и наконец понял, что она нужна не только тем тем, кто работает с большими данными. Метод применяется в реально жизненных кейсах. Например, с ним можно:

✔️ прогнозировать спрос и цены на продукты
✔️ измерять эффект от запуска фич
✔️ быстро собирать базовые ML-модели

Эти карточки я взял в канале «Зачем мне эта математика». Там такие темы разбирают наглядно: показывают графики, раскладывают формулы по шагам и связывают всё это с кейсами из аналитики и разработки.

А ещё там рассказывают много неожиданных фактов и каждую неделю публикуют задачи. В комментах можно обсудить вопросы и задать вопросы редакции.

Так что если хотите влюбиться в математику и понять, как устроены технологии вокруг нас — подписывайтесь и следите.

Реклама. ООО «ФРОМ СКРЭТЧ», ИНН 9724205560, erid: 2Vtzqxf17nH
😁3118👍12🙈6🥰3🦄3
🌟 MedSAM-3: адаптация SAM 3 для медицины.

MedSAM-3 - исследовательский проект, который переносит возможности сегментации по текстовым запросам из общего домена в медицинский.

Несмотря на мощь оригинальной SAM 3, тесты показали ее слабую применимость к клиническим данным: базовая модель часто путает анатомические структуры и не понимает специфические термины.

MedSAM-3 решает эту проблему, позволяя врачам выделять объекты на снимках МРТ, КТ, УЗИ и гистопатологии с помощью естественного языка. Например, по запросу «сегментируй опухоль молочной железы».

В основе - дизайн SAM 3 с двойным трансформером. На обучении заморозили энкодеры изображений и текста, чтобы сохранить сильные визуальные приоритеты оригинала, а вот компоненты детектора прошли SFT на медицинских датасетах. Это позволило сохранить мощный базис оригинальной SAM 3, но добавить ей понимание медицинской специфики.

В посттрейн-тестах наилучшую производительность показала конфигурация MedSAM-3 T+I, где текстовые подсказки были объединены с ограничивающими рамками. Такой подход позволил тестовой модели обойти классический U-Net и первую версию MedSAM на бенчмарках BUSI (Dice score - 0.7772) и Kvasir-SEG.

🟡Помимо самой модели, разработчики собрали агентный фреймворк MedSAM-3 Agent.

Он использует мультимодальную LLM (в экспериментах - Gemini 3 Pro) в качестве планировщика, который анализирует запрос, выстраивает цепочку рассуждений и итеративно управляет процессом сегментации.

В эксперименте c Gemini 3 Pro, на том же тестовом наборе BUSI, метрика Dice выросла с 0.7772 до 0.8064.

⚠️ Проект пока на стадии техотчета, но разработчики обещают опубликовать код и веса модели в ближайшее время. Так что тем, кто занимается ИИ в медицине - рекомендуем следить за репозиторием на Github.


📌Лицензирование: Apache 2.0 License.


🟡Arxiv
🖥Github


@ai_machinelearning_big_data

#AI #ML #Segmentation #MedSAM3
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥53👍2015💋5🥰3🤔2🦄2🗿1
🚀 GELab-Zero - первый полноценный open-source стек “Model + Infra” для GUI-агентов.

Это открытая альтернатива закрытым системам уровня GUI Agent MCP: готовая модель, готовая инфраструктура и новый бенчмарк, собранный под реальные задачи.

Что внутри:

• SOTA-модель 4B - лёгкая, быстрая, запускается локально.
• One-Click инфраструктура - без ADB и сложных зависимостей.
• AndroidDaily - новый бенчмарк, основанный на рабочих пользовательских сценариях.

Производительность:

• Лучшие результаты на открытых тестах - модель обходит гораздо более крупные системы вроде GUI-Owl-32B на ScreenSpot, AndroidWorld и OSWorld.
• 73.4% точности на AndroidDaily - существенно выше, чем UI-TARS-1.5 (47%), Gemini-2.5-pro-thinking (36.6%) и GPT-4o (19.6%).

Идея простая: скачивайте, запускайте локально, ломайте, улучшайте.
Открытый стек для GUI-агентов наконец доступен.

🟠HuggingFace: https://huggingface.co/stepfun-ai/GELab-Zero-4B-preview
🟠GitHub: https://github.com/stepfun-ai/gelab-zero
🟠Blog: https://opengelab.github.io/index.html

@ai_machinelearning_big_data

#AI, #Agents, #GUIAgents, #GELabZero, #OpenSource, #MachineLearning, #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
38👍18🔥10🥱3🦄1
2025/12/03 16:47:48
Back to Top
HTML Embed Code: