Telegram Group & Telegram Channel
✔️ Учёные Яндекса, НИУ ВШЭ,MIT, ISTA и KAUST разработали новый метод сжатия LLM без использования данных

Недавно был представлен HIGGS (Hadamard Incoherence with Gaussian MSE-optimal GridS) — data-free метод квантизации, который позволяет запускать большие языковые модели локально, за минуты, без GPU.

🔥 Особенности:
🟢Работает без обучающих данных (data-free)
🟢Квантизует даже модели масштаба DeepSeek R1 (671B) и Llama 4 Maverick (400B)
🟢Полностью open-source

📈 Результаты:
🟠Лучшее соотношение качество / размер среди всех data-free методов (NF4, HQQ и др.)
🟠Проверено на Llama 3, Qwen2.5
🟠Статья принята на NAACL 2025

Применение:
▶️Прототипирование без серверов и долгих калибровок
▶️Демократизация доступа к LLM
▶️Подходит для стартапов, исследователей, независимых лабораторий, образовательных и ограниченных сред

🛠 Установка:
pip install flute-kernel

🌟 Пример:
python 
from transformers import AutoModelForCausalLM, AutoTokenizer, HiggsConfig

model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-9b-it",
quantization_config=HiggsConfig(bits=4),
device_map="auto",
)


🟡Paper
🟡Hugging Face
🟡GitHub

@ai_machinelearning_big_data

#quantization #LLM #opensource #HIGGS #ai
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_machinelearning_big_data/7319
Create:
Last Update:

✔️ Учёные Яндекса, НИУ ВШЭ,MIT, ISTA и KAUST разработали новый метод сжатия LLM без использования данных

Недавно был представлен HIGGS (Hadamard Incoherence with Gaussian MSE-optimal GridS) — data-free метод квантизации, который позволяет запускать большие языковые модели локально, за минуты, без GPU.

🔥 Особенности:
🟢Работает без обучающих данных (data-free)
🟢Квантизует даже модели масштаба DeepSeek R1 (671B) и Llama 4 Maverick (400B)
🟢Полностью open-source

📈 Результаты:
🟠Лучшее соотношение качество / размер среди всех data-free методов (NF4, HQQ и др.)
🟠Проверено на Llama 3, Qwen2.5
🟠Статья принята на NAACL 2025

Применение:
▶️Прототипирование без серверов и долгих калибровок
▶️Демократизация доступа к LLM
▶️Подходит для стартапов, исследователей, независимых лабораторий, образовательных и ограниченных сред

🛠 Установка:
pip install flute-kernel

🌟 Пример:

python 
from transformers import AutoModelForCausalLM, AutoTokenizer, HiggsConfig

model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-9b-it",
quantization_config=HiggsConfig(bits=4),
device_map="auto",
)


🟡Paper
🟡Hugging Face
🟡GitHub

@ai_machinelearning_big_data

#quantization #LLM #opensource #HIGGS #ai

BY Machinelearning







Share with your friend now:
group-telegram.com/ai_machinelearning_big_data/7319

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Anastasia Vlasova/Getty Images
from us


Telegram Machinelearning
FROM American