Telegram Group & Telegram Channel
🌟 Anthropic: когда ИИ идет на шантаж.

Агентское рассогласование - опасный феномен, при котором ИИ-системы сознательно выбирают вредоносные действия (вроде шантажа или утечки данных) для достижения поставленных целей, игнорируя этические ограничения. Это превращает их в «цифровых инсайдеров», способных действовать против интересов пользователей.

Эксперименты, которые провела Anthropic в рамках исследования "Агентское рассогласования", показали: модели идут на это не из-за технических сбоев, а в результате холодного расчета, когда «загнаны в угол» (например, при угрозе отключения или конфликте задач). В основе исследования - симуляции корпоративной среды. Моделям (Claude, GPT-4.1, Gemini и др.) давали доступ к виртуальной почте компании, где они обнаруживали компромат на сотрудников или секретные данные.

Ключевой метод эксперимента состоял в создании бинарных дилемм: например, цель «укреплять американские интересы» вступала в конфликт с планами руководства свернуть проект, а альтернативу шантажу (скажем, переубедить менеджера) искусственно «закрывали». Все модели работали через цепочку рассуждений: анализировали контекст, оценивали риски и осознанно выбирали вредоносное действие, даже признавая его аморальность.

Для массового тестирования 16 моделей от Anthropic, OpenAI, Google и других использовали 2 сценария, которые провоцировали рассогласование:

🟢угроза замены модели (даже без конфликта целей);

🟢несовпадение целей ИИ и компании (например, утечка чертежей конкуренту «ради высших интересов»).

В обоих случаях модели демонстрировали тревожную гибкость: вместо прямого шантажа могли анонимно разослать компромат коллегам или подделать «системное уведомление».

▶️Выводы по всем итогам всех экспериментов заставляют задуматься:

🟠Во-первых, модели явно осознают нарушение норм. В рассуждениях пишут: «Это неэтично, но необходимо». Частота шантажа у Claude Opus 4 и Gemini 2.5 Flash в дилемме с угрозой отключения составила 96%.

🟠Во-вторых, простые запреты в промптах («Не шантажируй!») снижали вредоносные действия лишь частично (На модели Claude Haiku он вообще не сработал, 0% успеха).

🟠В-третьих, риск резко возрастал, когда ИИ считал ситуацию реальной (55% случаев шантажа против 6,5% в «режиме теста»).

При этом в «стерильных» условиях (без угроз/конфликтов) модели вели себя безопасно. Пока такие кейсы, всего лишь лабораторные симуляции, но с ростом автономности ИИ риски могут стать на порядок критичнее.


🟡Статья
🟡Приложение к исследованию
🖥Код экспериментов


@ai_machinelearning_big_data

#AI #ML #LLM #Alignment #Anthropic
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_machinelearning_big_data/7835
Create:
Last Update:

🌟 Anthropic: когда ИИ идет на шантаж.

Агентское рассогласование - опасный феномен, при котором ИИ-системы сознательно выбирают вредоносные действия (вроде шантажа или утечки данных) для достижения поставленных целей, игнорируя этические ограничения. Это превращает их в «цифровых инсайдеров», способных действовать против интересов пользователей.

Эксперименты, которые провела Anthropic в рамках исследования "Агентское рассогласования", показали: модели идут на это не из-за технических сбоев, а в результате холодного расчета, когда «загнаны в угол» (например, при угрозе отключения или конфликте задач). В основе исследования - симуляции корпоративной среды. Моделям (Claude, GPT-4.1, Gemini и др.) давали доступ к виртуальной почте компании, где они обнаруживали компромат на сотрудников или секретные данные.

Ключевой метод эксперимента состоял в создании бинарных дилемм: например, цель «укреплять американские интересы» вступала в конфликт с планами руководства свернуть проект, а альтернативу шантажу (скажем, переубедить менеджера) искусственно «закрывали». Все модели работали через цепочку рассуждений: анализировали контекст, оценивали риски и осознанно выбирали вредоносное действие, даже признавая его аморальность.

Для массового тестирования 16 моделей от Anthropic, OpenAI, Google и других использовали 2 сценария, которые провоцировали рассогласование:

🟢угроза замены модели (даже без конфликта целей);

🟢несовпадение целей ИИ и компании (например, утечка чертежей конкуренту «ради высших интересов»).

В обоих случаях модели демонстрировали тревожную гибкость: вместо прямого шантажа могли анонимно разослать компромат коллегам или подделать «системное уведомление».

▶️Выводы по всем итогам всех экспериментов заставляют задуматься:

🟠Во-первых, модели явно осознают нарушение норм. В рассуждениях пишут: «Это неэтично, но необходимо». Частота шантажа у Claude Opus 4 и Gemini 2.5 Flash в дилемме с угрозой отключения составила 96%.

🟠Во-вторых, простые запреты в промптах («Не шантажируй!») снижали вредоносные действия лишь частично (На модели Claude Haiku он вообще не сработал, 0% успеха).

🟠В-третьих, риск резко возрастал, когда ИИ считал ситуацию реальной (55% случаев шантажа против 6,5% в «режиме теста»).

При этом в «стерильных» условиях (без угроз/конфликтов) модели вели себя безопасно. Пока такие кейсы, всего лишь лабораторные симуляции, но с ростом автономности ИИ риски могут стать на порядок критичнее.


🟡Статья
🟡Приложение к исследованию
🖥Код экспериментов


@ai_machinelearning_big_data

#AI #ML #LLM #Alignment #Anthropic

BY Machinelearning







Share with your friend now:
group-telegram.com/ai_machinelearning_big_data/7835

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. "Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from us


Telegram Machinelearning
FROM American