group-telegram.com/ai_newz/2632
Last Update:
О будущем LLM
Не знаю за ваши модные ку-стары, но вот некоторый набор уже практически фактов про LLM в перспективе месяцев:
1. GPT и LLaMa — это не продукты, а исследовательские проекты. Как только детали архитектуры, пайплайнов, датасетов станут ясны (экспериментальным путём), стоимость тренировки аналогичной модели упадет в разы, а скорее сотни раз. Вы сможете сделать претрейн специализированной модели за $10-100k, причем даже в распределенной среде.
2. То же самое с инференсом. За счет квантизации, MoD, оптимизации под edge девайсы и архитектуры ARM, TPU, NPU модели уровня 13-30В параметров можно будет запускать на телефонах.
3. За счет увеличения окна контекста до миллионов токенов, файнтьюнинг становится не так важен. Ты просто копируешь промт на 10-100 страниц со всей историей своей жизни или организации и получаешь персональную модель. Стоимость переключения с Зефира на Гермес, с Клода на Databricks становится ровно три клика и один копипаст.
4. Адаптивный роутинг. Приложения выбирают модели на лету, в зависимости от задачи. Модели выбирают инфраструктуру для вычислений на лету, в зависимости от спроса и предложения на железо в конкретный момент.
5. RAG не уйдет, а, наоборот, заменит в некоторой степени претрейнинг. Большие децентрализованные RAG датасеты на миллиарды или триллионы токенов будут просто «подсасывать» знания на лету, что позволит делать базовые еще тоньше, быстрее и запускать на микроволновке (quite literally).
BY эйай ньюз
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/ai_newz/2632