Telegram Group & Telegram Channel
Как ускоряют инференс LLM в character.ai. LLM компании обрабатывают 20 тысяч запросов в секунду, так что задача непростая.

Уменьшение KV Cache:
85% слоёв используют только Local Attention, вместо обычного (первая картинка). Это сильно уменьшает размер кэша, особенно для длинных контекстов. Этот же подход используется в Gemini и Gemma 2. А ещё он напоминает Jamba, там тоже "тяжёлый" attention использовали только для некоторых слоёв.
Используют Multi-Query Attention, вместо доминирующего сейчас Group Query Attention, это позволяет уменьшить размер кэша в восемь раз по сравнению с индустриальным стандартом, но с сильными просадками в качестве.
KV Cache шерится между слоями (статья).

Это уменьшает размер KV Cache более чем в 20 раз, что делает возможным хранение кэша:
На одну машину влезает KV Cache тысяч пользователей
Сегментирование KV Cache для каждого сообщения (вторая картинка) - позволяет продолжить разговор с любого момента без перегенерации кэша
Чтобы сохранение кэша работало используются Sticky Sessions - пользователей пытаются кидать на серверы где уже сохранён их KV Cache. Выходит с эффективностью более чем 95%.

И инференс и тренировка происходят в int8 😮, об этом они обещают написать ещё один пост.

Из-за этих оптимизаций стоимость инференса для стартапа упала за полтора года в 33 раза, в 13 раз дешевле чем у ближайших конкурентов.

Character ai - это стартап предоставляющий услуги "ИИ вайфу", подробнее я писал вчера тут и тут. Основан Noam Shazeer, одним из авторов трансформера. Он приложил руку ко многим инновациям в LLM за последние 7 лет (MoE, MQA, T5). Кстати из-за него трансформеры чуть не назвали CargoNet, благо не прижилось.

В общем, это не просто очередная обертка над API от OpenaI, тут челы реально разрабатывают свои модели и ускоряют их сами, что заслуживает большого репекта.

Блогпост

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2961
Create:
Last Update:

Как ускоряют инференс LLM в character.ai. LLM компании обрабатывают 20 тысяч запросов в секунду, так что задача непростая.

Уменьшение KV Cache:
85% слоёв используют только Local Attention, вместо обычного (первая картинка). Это сильно уменьшает размер кэша, особенно для длинных контекстов. Этот же подход используется в Gemini и Gemma 2. А ещё он напоминает Jamba, там тоже "тяжёлый" attention использовали только для некоторых слоёв.
Используют Multi-Query Attention, вместо доминирующего сейчас Group Query Attention, это позволяет уменьшить размер кэша в восемь раз по сравнению с индустриальным стандартом, но с сильными просадками в качестве.
KV Cache шерится между слоями (статья).

Это уменьшает размер KV Cache более чем в 20 раз, что делает возможным хранение кэша:
На одну машину влезает KV Cache тысяч пользователей
Сегментирование KV Cache для каждого сообщения (вторая картинка) - позволяет продолжить разговор с любого момента без перегенерации кэша
Чтобы сохранение кэша работало используются Sticky Sessions - пользователей пытаются кидать на серверы где уже сохранён их KV Cache. Выходит с эффективностью более чем 95%.

И инференс и тренировка происходят в int8 😮, об этом они обещают написать ещё один пост.

Из-за этих оптимизаций стоимость инференса для стартапа упала за полтора года в 33 раза, в 13 раз дешевле чем у ближайших конкурентов.

Character ai - это стартап предоставляющий услуги "ИИ вайфу", подробнее я писал вчера тут и тут. Основан Noam Shazeer, одним из авторов трансформера. Он приложил руку ко многим инновациям в LLM за последние 7 лет (MoE, MQA, T5). Кстати из-за него трансформеры чуть не назвали CargoNet, благо не прижилось.

В общем, это не просто очередная обертка над API от OpenaI, тут челы реально разрабатывают свои модели и ускоряют их сами, что заслуживает большого репекта.

Блогпост

@ai_newz

BY эйай ньюз





Share with your friend now:
group-telegram.com/ai_newz/2961

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report.
from us


Telegram эйай ньюз
FROM American