Telegram Group & Telegram Channel
XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX

В RL уже давно стоит проблема чрезмерно медленных сред, особенно когда речь идёт о масштабных мета-RL экспериментах. Чтобы достичь хорошей производительности, агенту требуется огромное количество взаимодействий со средой. Если среда генерирует данные медленно, то обучение затягивается на долгие часы и дни, а исследование новых идей становится крайне неудобным.

Но на CPU достичь больших скоростей трудно - даже несмотря на то что у современных процов часто сотни ядер, они просто не могут угнаться за современными видяхами, мощность которых часто измеряется в петафлопсах. И вот поэтому среды стали переносить на GPU, но писать CUDA код, особенно быстрый не каждый ресёрчер сможет

Поэтому не так давно пошла мода писать среды на Jax - фреймворке от Google, основном конкуренте PyTorch. Создавали его в том числе под DeepMind, поэтому тамошние ресёрчеры убедились чтобы в нём было достаточно гибкости для создания таких сред. Но хоть Jax и в опенсорсе, а свои среды Google никому не даёт.

XLand-MiniGrid, созданный чуваками из T-Bank AI Research и AIRI, как раз и есть опенсорс репродукция Xland, закрытой среды от Google. Это grid-world среда, где агент перемещается по сетке и взаимодействует с объектами по определённым правилам. Такие среды можно очень просто и быстро симулировать, при этом задачи остаются нетривиальными, а результаты часто переносятся на более сложные домены. В Xland-MiniGrid агент решает задачи на основе системы правил и целей. Например:

Агент видит на поле синюю пирамиду и фиолетовый квадрат. Его задача - поднять пирамиду и положить рядом с квадратом. Когда он это делает, срабатывает правило NEAR и оба объекта превращаются в красный круг.
Появляется новая цель - поместить красный круг рядом с зелёным. Но если агент поместит фиолетовый квадрат рядом с жёлтым кругом, задача становится нерешаемой.

Такие правила можно комбинировать, создавая деревья задач разной глубины. В простых бенчмарках всего пара правил, в сложных - до 18. При этом позиции объектов рандомизируются при каждом сбросе среды, а правила и цели скрыты от агента. Чтобы решить задачу, ему нужно экспериментировать и запоминать, какие действия к чему приводят.

Работает это всё на бешенных скоростях - на одной RTX 4090 может симулироваться до 800к действий в секунду, а ведь можно использовать далеко не одну GPU. А для того чтобы не генерить с нуля, авторы уже сгенерили и выложили в опенсорс датасет на 100 миллиардов взаимодействий, о котором я уже писал.

Пейпер
Код

@ai_newz



group-telegram.com/ai_newz/3510
Create:
Last Update:

XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX

В RL уже давно стоит проблема чрезмерно медленных сред, особенно когда речь идёт о масштабных мета-RL экспериментах. Чтобы достичь хорошей производительности, агенту требуется огромное количество взаимодействий со средой. Если среда генерирует данные медленно, то обучение затягивается на долгие часы и дни, а исследование новых идей становится крайне неудобным.

Но на CPU достичь больших скоростей трудно - даже несмотря на то что у современных процов часто сотни ядер, они просто не могут угнаться за современными видяхами, мощность которых часто измеряется в петафлопсах. И вот поэтому среды стали переносить на GPU, но писать CUDA код, особенно быстрый не каждый ресёрчер сможет

Поэтому не так давно пошла мода писать среды на Jax - фреймворке от Google, основном конкуренте PyTorch. Создавали его в том числе под DeepMind, поэтому тамошние ресёрчеры убедились чтобы в нём было достаточно гибкости для создания таких сред. Но хоть Jax и в опенсорсе, а свои среды Google никому не даёт.

XLand-MiniGrid, созданный чуваками из T-Bank AI Research и AIRI, как раз и есть опенсорс репродукция Xland, закрытой среды от Google. Это grid-world среда, где агент перемещается по сетке и взаимодействует с объектами по определённым правилам. Такие среды можно очень просто и быстро симулировать, при этом задачи остаются нетривиальными, а результаты часто переносятся на более сложные домены. В Xland-MiniGrid агент решает задачи на основе системы правил и целей. Например:

Агент видит на поле синюю пирамиду и фиолетовый квадрат. Его задача - поднять пирамиду и положить рядом с квадратом. Когда он это делает, срабатывает правило NEAR и оба объекта превращаются в красный круг.
Появляется новая цель - поместить красный круг рядом с зелёным. Но если агент поместит фиолетовый квадрат рядом с жёлтым кругом, задача становится нерешаемой.

Такие правила можно комбинировать, создавая деревья задач разной глубины. В простых бенчмарках всего пара правил, в сложных - до 18. При этом позиции объектов рандомизируются при каждом сбросе среды, а правила и цели скрыты от агента. Чтобы решить задачу, ему нужно экспериментировать и запоминать, какие действия к чему приводят.

Работает это всё на бешенных скоростях - на одной RTX 4090 может симулироваться до 800к действий в секунду, а ведь можно использовать далеко не одну GPU. А для того чтобы не генерить с нуля, авторы уже сгенерили и выложили в опенсорс датасет на 100 миллиардов взаимодействий, о котором я уже писал.

Пейпер
Код

@ai_newz

BY эйай ньюз


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/ai_newz/3510

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news.
from us


Telegram эйай ньюз
FROM American