Telegram Group & Telegram Channel
⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2493
Create:
Last Update:

⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz

BY эйай ньюз






Share with your friend now:
group-telegram.com/ai_newz/2493

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford.
from us


Telegram эйай ньюз
FROM American