Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37
Warning: file_put_contents(aCache/aDaily/post/ainastia/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50 Anastasia.ai – Tech Entrepreneur in🇨🇭 | Telegram Webview: ainastia/26 -
Почему в прошлом 87% Data Science проектов не доходило до продакшена и как обеспечить ROI?
Всем привет! В прошлом посте мы уточнили, что data-инициативы должны строиться в соответствии с уровнем data maturity в компании. Также я уже упомянула важность и сложности быстрого и значительного ROI проектов, связанных с данными и ИИ (тут и тут). C-level лидеры последние 5+ лет активно инвестировали огромные деньги в развитие инфраструктуры данных и команд в сфере машинного обучения. При этом есть множество доказательств, что return получили не все проекты. Сегодня хочу поделиться с вами интересными мыслями о том, почему так много Data Science проектов проваливаются и как это исправить.
Что нужно сделать или изменить, чтобы избежать замкнутого круга неуспешных data проектов? Есть технические, а есть бизнесовые требования. Сегодня я хочу начать серию постов, которая раскроет бизнесовые компоненты и необходимые условия для успешных data проектов, которые генерируют отдачу. Самые важные компоненты: *️⃣Динамическая техническая стратегия *️⃣Continuous transformation через innovation mix, *️⃣Внедрение data-driven culture & literacy *️⃣Сollaborative opportunity discovery
Wait what? – Давайте по порядку! ▶️Продолжение в следующим посте.
Почему в прошлом 87% Data Science проектов не доходило до продакшена и как обеспечить ROI?
Всем привет! В прошлом посте мы уточнили, что data-инициативы должны строиться в соответствии с уровнем data maturity в компании. Также я уже упомянула важность и сложности быстрого и значительного ROI проектов, связанных с данными и ИИ (тут и тут). C-level лидеры последние 5+ лет активно инвестировали огромные деньги в развитие инфраструктуры данных и команд в сфере машинного обучения. При этом есть множество доказательств, что return получили не все проекты. Сегодня хочу поделиться с вами интересными мыслями о том, почему так много Data Science проектов проваливаются и как это исправить.
Что нужно сделать или изменить, чтобы избежать замкнутого круга неуспешных data проектов? Есть технические, а есть бизнесовые требования. Сегодня я хочу начать серию постов, которая раскроет бизнесовые компоненты и необходимые условия для успешных data проектов, которые генерируют отдачу. Самые важные компоненты: *️⃣Динамическая техническая стратегия *️⃣Continuous transformation через innovation mix, *️⃣Внедрение data-driven culture & literacy *️⃣Сollaborative opportunity discovery
Wait what? – Давайте по порядку! ▶️Продолжение в следующим посте.
As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site.
from us