#statistics
Мои коллеги из X5 не перестают радовать новым полезным контентом. В этот раз статья про использование Reinforcement Learning в задаче групповой оптимизации цен.
Читаем, просвещаемся, наслаждаемся! И не забываем ставить плюсики, конечно же ;)
Мои коллеги из X5 не перестают радовать новым полезным контентом. В этот раз статья про использование Reinforcement Learning в задаче групповой оптимизации цен.
Читаем, просвещаемся, наслаждаемся! И не забываем ставить плюсики, конечно же ;)
Хабр
Reinforcement Learning в задаче групповой оптимизации цен
Введение Привет, Хабр! На связи аналитики больших данных Х5 Tech — Антон Денисов и Михаил Будылин . В предыдущей статье про многоруких бандитов мы показали, как можно искать оптимальную цену в разрезе...
#LLM
Парад клевых материалов продолжается!
Теперь вышла уже моя статья (я бы даже сказал, что методичка) по промт-инжинирингу простыми словами.
Как обычно, читайте, ставьте плюсики, делитесь материалом с теми, кто еще не знает премудростей prompt engineering'а.
Парад клевых материалов продолжается!
Теперь вышла уже моя статья (я бы даже сказал, что методичка) по промт-инжинирингу простыми словами.
Как обычно, читайте, ставьте плюсики, делитесь материалом с теми, кто еще не знает премудростей prompt engineering'а.
Хабр
Prompt engineering 101
Привет! Сегодня на связи: Артем Ерохин — Lead DS в команде развития искусственного интеллекта X5 Tech (наша команда занимается разработкой и внедрением моделей...
Сегодня буду на TurboML от Т-банка. Если у кого есть желание пообщаться - пишите в личку, пересечемся там
Forwarded from (sci)Berloga Всех Наук и Технологий
🚀 Если Вам интересно машинное обучение и/или математика - приглашаем Вас принять участие в проекте по применению методов МЛ/RL к теории групп/графов Кэли - напишите @alexander_v_c - если хотите принять участие, а также заходите на вводный вебинар (знаний теории групп не требуется):
👨🔬 Александр Червов (к.ф.-м.н) "Методы МЛ в теории групп - введение и обзор достигнутого"
⌚️ Понедельник 22 июля, 18.00 (по Москве)
Методы машинного обучения могут быть применены к ряду классических задач теории групп - разложение элемента по образующим, оценки диаметра. Мы приглашаем принять всех участие в данном проекте. Предварительное требование - знание Питона и наличие нескольких свободных часов в неделю. Если вы хотите улучшить свои знания по МЛ/RL и внести вклад в развитие науки - это отличный шанс .
В данном докладе мы простым языком объясним формулировки основных задач, и как задачи теории групп переводятся на язык машинного обучения. Предварительных знаний не требуется. Также, мы дадим обзор уже достигнутых результатов - в частности для группы порядка 4*10^19 (Rubik cube) нам уже удается находить решение задачи за минуты , а не 40 часов ГПУ как было в предыдущей работе "DeepCube".
План доклада:
1 Переформулировка основной задачи на простом языке матриц
2 Матрицы перестановок и группы типа кубика Рубика (см. ноутбук "Visualize allowed moves": https://www.kaggle.com/code/marksix/visualize-allowed-moves )
3 Графы Кэли и переформулировка основной задачи как поиск пути на графе
4 Случайные блуждания по графам - создание трейн сета для МЛ-модели
5 Подход к решению задач теории групп через машинное обучение. Оценка дистанции до цели через МЛ-модель и проблема наличия множественных локальных минимумов у этой оценки
6 Beam search. (Один из вариантов борьбы с застреваниями в локальных минимумах)
7 Бейзлайн реализация: МЛ+ Beam search - ноутбук: https://www.kaggle.com/code/alexandervc/baseline-1-for-permutations - решение кубика Рубика за пару минут
8 Cледующие шаги: RL-часть, улучшение нейросеток, улучшение трейн сета, улучшение beam search
Добавляйтесь в группу проекта: https://www.group-telegram.com/sberlogasci/10989 и пишите @alexander_v_c - если Вам интересно !
PS
См. также предыдущий вводный доклад:
https://www.group-telegram.com/sberlogasci/10989/15283 "Введение в методы поиска короткого пути на больших графах" (Кирилл Хоружий )
Zoom link will be in @sberlogabig just before start. Video records: https://www.youtube.com/c/SciBerloga - subscribe !
👨🔬 Александр Червов (к.ф.-м.н) "Методы МЛ в теории групп - введение и обзор достигнутого"
⌚️ Понедельник 22 июля, 18.00 (по Москве)
Методы машинного обучения могут быть применены к ряду классических задач теории групп - разложение элемента по образующим, оценки диаметра. Мы приглашаем принять всех участие в данном проекте. Предварительное требование - знание Питона и наличие нескольких свободных часов в неделю. Если вы хотите улучшить свои знания по МЛ/RL и внести вклад в развитие науки - это отличный шанс .
В данном докладе мы простым языком объясним формулировки основных задач, и как задачи теории групп переводятся на язык машинного обучения. Предварительных знаний не требуется. Также, мы дадим обзор уже достигнутых результатов - в частности для группы порядка 4*10^19 (Rubik cube) нам уже удается находить решение задачи за минуты , а не 40 часов ГПУ как было в предыдущей работе "DeepCube".
План доклада:
1 Переформулировка основной задачи на простом языке матриц
2 Матрицы перестановок и группы типа кубика Рубика (см. ноутбук "Visualize allowed moves": https://www.kaggle.com/code/marksix/visualize-allowed-moves )
3 Графы Кэли и переформулировка основной задачи как поиск пути на графе
4 Случайные блуждания по графам - создание трейн сета для МЛ-модели
5 Подход к решению задач теории групп через машинное обучение. Оценка дистанции до цели через МЛ-модель и проблема наличия множественных локальных минимумов у этой оценки
6 Beam search. (Один из вариантов борьбы с застреваниями в локальных минимумах)
7 Бейзлайн реализация: МЛ+ Beam search - ноутбук: https://www.kaggle.com/code/alexandervc/baseline-1-for-permutations - решение кубика Рубика за пару минут
8 Cледующие шаги: RL-часть, улучшение нейросеток, улучшение трейн сета, улучшение beam search
Добавляйтесь в группу проекта: https://www.group-telegram.com/sberlogasci/10989 и пишите @alexander_v_c - если Вам интересно !
PS
См. также предыдущий вводный доклад:
https://www.group-telegram.com/sberlogasci/10989/15283 "Введение в методы поиска короткого пути на больших графах" (Кирилл Хоружий )
Zoom link will be in @sberlogabig just before start. Video records: https://www.youtube.com/c/SciBerloga - subscribe !
#LLM
Сегодня мы начнем говорить про галлюцинации в LLM. Т.к. тема весьма обширная, то будет целая серия постов.
Галлюцинации в LLM. Часть 1
Давайте начинать разбираться в этой обширной, но интересной теме.
Что же, собственно, это за галлюцинации? И почему они могут помешать нашей работе с LLM?
Если мы рассматриваем это явление с точки зрения психологии, то “галлюцинации” – это разнообразные аномалии восприятия окружающей действительности, возникающие без внешнего раздражителя. То есть, когда наш мозг видит, слышит или чувствует то, чего в реальном мире сейчас нет.
Но если мы смотрим на это понятие с точки зрения обработки естественных языков (NLP, Natural Language Processing), то “галлюцинации” – это аномалии генерации, при которых сгенерированный результат кажется бессмысленным или не соответствуют входным данным. Получается, что в этом случае, речь скорее о получаемых результатах. И это уже отличные от привычного понимания “галлюцинации”.
Если упрощать, то при галлюцинациях LLM начинает "выдумывать" что-то, чего нет в реальном мире, либо выдавать результаты, не соответствующие запросу.
А какие типы галлюцинаций бывают?
В весьма годном обзоре по галлюцинациям "A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions", предлагают следующую типизацию галлюцинаций:
Фактические галлюцинации.
Здесь все просто. К данному типу относятся случаи, при которых модель генерирует ответы, противоречащие общеизвестными фактам или фабрикует какие-либо факты.
Например, модель на запрос “Кому принадлежит первый орден Октябрьской революции?” ответит “Ленин”. А в реальности этот орден принадлежит городу Ленинград.
Или придумать этимологию слова “шпулевина”, которого попросту нет в русском языке.
Галлюцинации следования запросу (или галлюцинации верности).
К этому типу относятся случаи, когда игнорирует часть (или вовсе всю) входную инструкцию, игнорирует контекст запроса или имеет логические несоответствия и противоречия в ответе.
Частый пример: при длинном запросе модель может “потерять” часть входной информации из запроса и по этой причине выдать частично некорректный ответ.
Еще один пример. Если мы спросим у модели логическую задачу “У вас есть 50 мотоциклов, у каждого из которых запах хода на 100 км. Сколько вы можете проехать на этих мотоциклах?”, модель просто умножит 100 * 50 и будет считать это верным ответом. В реальности, конечно же, этот ответ неверен.
И почему же это проблема?
В принципе, по примерам уже можно догадаться, что нежелательное поведение с "выдумыванием" вряд ли понравится пользователям.
Представьте, что вместо реальных ссылок на нужное видео, LLM постоянно (или хотя бы достаточно часто) будет выдавать ссылку вот сюда. Польза от такой системы, мягко говоря, получится не очень высокой.
А если представить, что LLM будет использоваться в какой-то бизнес-системе, или того хуже - в медицине (и подобных чувствительных областях). Тогда такое поведение может вовсе похоронить всю систему (даже если оно будет проявляться не так часто).
Пользователи станут с недоверием относиться к нашей системе. А нам это надо? Поэтому с галлюцинациями лучше нещадно бороться (впрочем, если вам важна креативность, то нужно бороться не со всеми типами галлюцинаций).
А в следующем посте поговорим про причины галлюцинаций. Stay tuned!
Сегодня мы начнем говорить про галлюцинации в LLM. Т.к. тема весьма обширная, то будет целая серия постов.
Галлюцинации в LLM. Часть 1
Давайте начинать разбираться в этой обширной, но интересной теме.
Что же, собственно, это за галлюцинации? И почему они могут помешать нашей работе с LLM?
Если мы рассматриваем это явление с точки зрения психологии, то “галлюцинации” – это разнообразные аномалии восприятия окружающей действительности, возникающие без внешнего раздражителя. То есть, когда наш мозг видит, слышит или чувствует то, чего в реальном мире сейчас нет.
Но если мы смотрим на это понятие с точки зрения обработки естественных языков (NLP, Natural Language Processing), то “галлюцинации” – это аномалии генерации, при которых сгенерированный результат кажется бессмысленным или не соответствуют входным данным. Получается, что в этом случае, речь скорее о получаемых результатах. И это уже отличные от привычного понимания “галлюцинации”.
Если упрощать, то при галлюцинациях LLM начинает "выдумывать" что-то, чего нет в реальном мире, либо выдавать результаты, не соответствующие запросу.
А какие типы галлюцинаций бывают?
В весьма годном обзоре по галлюцинациям "A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions", предлагают следующую типизацию галлюцинаций:
Фактические галлюцинации.
Здесь все просто. К данному типу относятся случаи, при которых модель генерирует ответы, противоречащие общеизвестными фактам или фабрикует какие-либо факты.
Например, модель на запрос “Кому принадлежит первый орден Октябрьской революции?” ответит “Ленин”. А в реальности этот орден принадлежит городу Ленинград.
Или придумать этимологию слова “шпулевина”, которого попросту нет в русском языке.
Галлюцинации следования запросу (или галлюцинации верности).
К этому типу относятся случаи, когда игнорирует часть (или вовсе всю) входную инструкцию, игнорирует контекст запроса или имеет логические несоответствия и противоречия в ответе.
Частый пример: при длинном запросе модель может “потерять” часть входной информации из запроса и по этой причине выдать частично некорректный ответ.
Еще один пример. Если мы спросим у модели логическую задачу “У вас есть 50 мотоциклов, у каждого из которых запах хода на 100 км. Сколько вы можете проехать на этих мотоциклах?”, модель просто умножит 100 * 50 и будет считать это верным ответом. В реальности, конечно же, этот ответ неверен.
И почему же это проблема?
В принципе, по примерам уже можно догадаться, что нежелательное поведение с "выдумыванием" вряд ли понравится пользователям.
Представьте, что вместо реальных ссылок на нужное видео, LLM постоянно (или хотя бы достаточно часто) будет выдавать ссылку вот сюда. Польза от такой системы, мягко говоря, получится не очень высокой.
А если представить, что LLM будет использоваться в какой-то бизнес-системе, или того хуже - в медицине (и подобных чувствительных областях). Тогда такое поведение может вовсе похоронить всю систему (даже если оно будет проявляться не так часто).
Пользователи станут с недоверием относиться к нашей системе. А нам это надо? Поэтому с галлюцинациями лучше нещадно бороться (впрочем, если вам важна креативность, то нужно бороться не со всеми типами галлюцинаций).
А в следующем посте поговорим про причины галлюцинаций. Stay tuned!
#video
Вышло видео моей беседы с коллегами в рамках дня открытых дверей совместной магистратуры X5 и ВШЭ.
Поговорили о ML и AI в ритейле, о том, зачем вообще менеджеру понимать про IT и про работу с данными и о том, чему учат на курсе анализа данных для менеджеров и в магистратуре "Менеджмент в ритейле" в целом.
Ссылка на видео. Успейте посмотреть, пока еще жив YouTube
Вышло видео моей беседы с коллегами в рамках дня открытых дверей совместной магистратуры X5 и ВШЭ.
Поговорили о ML и AI в ритейле, о том, зачем вообще менеджеру понимать про IT и про работу с данными и о том, чему учат на курсе анализа данных для менеджеров и в магистратуре "Менеджмент в ритейле" в целом.
Ссылка на видео. Успейте посмотреть, пока еще жив YouTube
YouTube
День открытых дверей программы “Менеджмент в Ритейле” | Магистратура | НИУ ВШЭ
«Менеджмент в ритейле» входит в ТОП-10 лучших магистерских программ по электронной коммерции и диджитал-маркетингу в Восточной Европе по версии международного рейтинга EdUniversal Best Masters.
Мы сотрудничаем с ведущими компаниями России и стремимся показать…
Мы сотрудничаем с ведущими компаниями России и стремимся показать…
#LLM
Галлюцинации в LLM. Часть 2
Уфф. Оказалось, что текст не влезает в обычный объем поста. Поэтому наслаждаемся статьей на telegraph'е. Надеюсь, изложил понятно.
https://telegra.ph/Istochniki-gallyucinacij-v-LLM-07-26
В следующей части мы рассмотрим бенчмарки для галлюцинаций и примеры метрик.
Галлюцинации в LLM. Часть 2
Уфф. Оказалось, что текст не влезает в обычный объем поста. Поэтому наслаждаемся статьей на telegraph'е. Надеюсь, изложил понятно.
https://telegra.ph/Istochniki-gallyucinacij-v-LLM-07-26
В следующей части мы рассмотрим бенчмарки для галлюцинаций и примеры метрик.
Telegraph
Источники галлюцинаций в LLM
С тем, что такое галлюцинации, какие бывают типы галлюцинаций и почему это плохо, мы разобрались. Давайте теперь перейдем к тому, откуда же получаются галлюцинаций, то есть, к причинам галлюцинирования LLM. Но для начала вспомним, что процесс обучения и работы…
#LLM
На Хабре вышла новая статья от моих коллег. Статья про применение LLM в наших чат-ботах и про то, как мы используем RAG при работе с чат-ботами.
Ну и, как обычно, читайте, кайфуйте, ставьте плюсики ;)
https://habr.com/ru/companies/X5Tech/articles/834832/
На Хабре вышла новая статья от моих коллег. Статья про применение LLM в наших чат-ботах и про то, как мы используем RAG при работе с чат-ботами.
Ну и, как обычно, читайте, кайфуйте, ставьте плюсики ;)
https://habr.com/ru/companies/X5Tech/articles/834832/
Хабр
Интеграция LLM в корпоративные чат-боты: RAG-подход и эксперименты
Всем привет! На связи команда AI-Run из X5 Tech, мы занимаемся генеративными сетями в целом и языковыми моделями в частности. В этой статье мы опишем наш опыт работы с большими языковыми моделями...
#LLM
Галлюцинации в LLM. Часть 3.
В этот раз текст опять будет в tegraph'е (картинки удобнее оформлять, да и текст был не особо коротким).
Сегодня речь будет идти о бенчмарках оценки уровня галлюцинаций и метриках для оценки галлюцинаций.
Ух... Вроде прошлись по базовым вещам. В следующей части мы начнем рассмотрение методов исправления галлюцинаций. Наконец-то ;)
https://telegra.ph/Benchmarki-i-metriki-dlya-ocenki-gallyucinacij-v-LLM-08-09
Галлюцинации в LLM. Часть 3.
В этот раз текст опять будет в tegraph'е (картинки удобнее оформлять, да и текст был не особо коротким).
Сегодня речь будет идти о бенчмарках оценки уровня галлюцинаций и метриках для оценки галлюцинаций.
Ух... Вроде прошлись по базовым вещам. В следующей части мы начнем рассмотрение методов исправления галлюцинаций. Наконец-то ;)
https://telegra.ph/Benchmarki-i-metriki-dlya-ocenki-gallyucinacij-v-LLM-08-09
Telegraph
Бенчмарки и метрики для оценки галлюцинаций в LLM
За прошедшее время в академии успело появиться очень много наборов данных и способов оценки галлюцинаций. Почти все из них – англоязычные (увы). На выбор есть и разные задачи (QA, Text Completion, Task Instructions, Text summarization и т.д.), так и разные…
#random
У меня начинается отпуск. Поэтому в большом цикле про галлюцинации в LLM пока перерыв.
Вернусь где-то в начале сентября с продолжением.
Ну а пока можете послушать милоту, которую я написал для своей дочери. Текст мой, музыка сгенерирована Suno
P.S. Сегодня каналу 4 года. С чем себя (и вас, конечно же) и поздравляю! Впереди еще много интересного, не теряйте ;)
У меня начинается отпуск. Поэтому в большом цикле про галлюцинации в LLM пока перерыв.
Вернусь где-то в начале сентября с продолжением.
Ну а пока можете послушать милоту, которую я написал для своей дочери. Текст мой, музыка сгенерирована Suno
P.S. Сегодня каналу 4 года. С чем себя (и вас, конечно же) и поздравляю! Впереди еще много интересного, не теряйте ;)
Suno
Колыбельная by @gofat | Suno
pop, female vocal, Crystal-clear song. Listen and make your own with Suno.
#statistics
Я был в отпуске, потом сильно простудился. Вроде оклемался (я так думал), но простуда нанесла подлый повторный удар. Поэтому пока без постов, увы ;(
А пока я тут собираюсь из жидкого металла обратно в машину по написанию постов, держите статью про множественное тестирование гипотез от настоящих машин, которые не знают ни сна, ни отдыха (ну, я так их представляю).
Я был в отпуске, потом сильно простудился. Вроде оклемался (я так думал), но простуда нанесла подлый повторный удар. Поэтому пока без постов, увы ;(
А пока я тут собираюсь из жидкого металла обратно в машину по написанию постов, держите статью про множественное тестирование гипотез от настоящих машин, которые не знают ни сна, ни отдыха (ну, я так их представляю).
Хабр
А/Б тестирование: множественная проверка гипотез
Хабр, привет! Сегодня обсудим, как проверять много гипотез в одном эксперименте. Разберёмся, почему растут вероятности ошибок. Познакомимся с метриками множественного тестирования и поправками,...
#ml
Ребята из команды написали статью про то, как они прогнали 20 разных моделей и дополнили лидерборд бенчмарка ruMTEB (Massive Text Embedding Benchmark).
В статье можно почитать выводы о том, какие модельки будут лучше для каких случаев и посмотреть инструкцию, как закинуть свою (или ту, которую хотите сравнить с другими) модель на лидерборд.
Ребята из команды написали статью про то, как они прогнали 20 разных моделей и дополнили лидерборд бенчмарка ruMTEB (Massive Text Embedding Benchmark).
В статье можно почитать выводы о том, какие модельки будут лучше для каких случаев и посмотреть инструкцию, как закинуть свою (или ту, которую хотите сравнить с другими) модель на лидерборд.
Хабр
Новый взгляд на оценку русскоязычных моделей: обновлённый бенчмарк ruMTEB и лидерборд
Всем привет! Меня зовут Роман Соломатин, я представляю команду AI-Run из X5 Tech, мы занимаемся генеративными сетями в целом и языковыми моделями в частности. Несколько месяцев назад русскоязычное...
#video
Я тут не увидел, а оказалось, что вышел мой видос про галлюцинации в LLM. Кому лень читать посты (которые я все еще не очень-то и закончил), то можно посмотреть видео ;)
Я тут не увидел, а оказалось, что вышел мой видос про галлюцинации в LLM. Кому лень читать посты (которые я все еще не очень-то и закончил), то можно посмотреть видео ;)
YouTube
Артем Ерохин — Галлюцинации в LLM: что это и как с ними бороться?
Ближайшая конференция: I’ML 2025, даты будут анонсированы позднее. Подробнее об I’ML: https://jrg.su/1drGPM
— —
Скачать презентацию с сайта I'ML — https://jrg.su/3kLthP
Сейчас использование LLM — крайне горячая тема. Кто же не знает про ChatGPT? Но языковые…
— —
Скачать презентацию с сайта I'ML — https://jrg.su/3kLthP
Сейчас использование LLM — крайне горячая тема. Кто же не знает про ChatGPT? Но языковые…
#conference
Этой осенью выступлю на Матемаркетинге в онлайн секции (в среду, 29.10 в 11-05). Полное расписание здесь.
Буду рассказывать про разметку данных с LLM (за прошедшее время у нас стало больше опыта с этой задачке).
Ну и, конечно, помимо меня будет онлайн и целых два оффлайн дня с докладами. Например, от X5 тоже будет несколько докладов: про А/Б платформу, про найм аналитиков (очень актуально, мы сейчас тоже нанимаем очень много), про дизайн-документы для А/Б тестов.
В общем, приходите посмотреть на меня и коллег!
Этой осенью выступлю на Матемаркетинге в онлайн секции (в среду, 29.10 в 11-05). Полное расписание здесь.
Буду рассказывать про разметку данных с LLM (за прошедшее время у нас стало больше опыта с этой задачке).
Ну и, конечно, помимо меня будет онлайн и целых два оффлайн дня с докладами. Например, от X5 тоже будет несколько докладов: про А/Б платформу, про найм аналитиков (очень актуально, мы сейчас тоже нанимаем очень много), про дизайн-документы для А/Б тестов.
В общем, приходите посмотреть на меня и коллег!
#conference
Завтра буду на Матемаркетинге оффлайн. Если кто-то хочет пообщаться - ловите во время конференции (ну или пишите в личку).
В этом году еще будет и стенд от X5. Я там тоже буду периодически появляться. И даже не просто ради тусовки (но это уже сюрприз, больше узнаете, если придете на наш стенд).
Завтра буду на Матемаркетинге оффлайн. Если кто-то хочет пообщаться - ловите во время конференции (ну или пишите в личку).
В этом году еще будет и стенд от X5. Я там тоже буду периодически появляться. И даже не просто ради тусовки (но это уже сюрприз, больше узнаете, если придете на наш стенд).
О, я тут буду людей собесить.
В целом, практика one day и weekend офферов интересная. Фактически, компании сами пытаются хакнуть свой же процесс найма.
Мое мнение — это достаточно эффективное решение, если нужно быстро набрать много людей (а в IT такое бывает). А вот если такие истории появляются при обычном процессе и объеме найма, то это скорее желание быстро апнуть метрики.
Хорошо, что у нас первый случай, а не второй (хе-хе).
В общем, забегайте по возможности, если сейчас ищете работу ;)
В целом, практика one day и weekend офферов интересная. Фактически, компании сами пытаются хакнуть свой же процесс найма.
Мое мнение — это достаточно эффективное решение, если нужно быстро набрать много людей (а в IT такое бывает). А вот если такие истории появляются при обычном процессе и объеме найма, то это скорее желание быстро апнуть метрики.
Хорошо, что у нас первый случай, а не второй (хе-хе).
В общем, забегайте по возможности, если сейчас ищете работу ;)
Forwarded from X5Tech
🏃🏻 Мимо вас опытный айтишник не пробегал? Передайте, что мы ищем аналитиков данных и ML-инженеров!
🗣 И обязательно пригласите на Weekend Offer 16-17 ноября в Москве!
В X5 Tech получить оффер можно за выходные:
⏺ приезжаете в московский офис;
⏺ демонстрируете hard skills на лайвкодинге;
⏺ знакомитесь с будущими коллегами.
Вы попадете в команду мечты, где:
- работаем на удаленке или в гибридном формате;
- развиваем амбициозные проекты вроде собственной платформы по работе с нейросетями, прогнозирования спроса и автоматического ценообразования;
- ходим на конференции, встречаемся с топами, играем в D&D, получаем ДМС и поддержку корпоративного психолога
- и многое-многое другое.
Встречаемся 16 ноября: регистрируйтесь и создавайте ритейл будущего вместе с Х5 Tech!
В X5 Tech получить оффер можно за выходные:
Вы попадете в команду мечты, где:
- работаем на удаленке или в гибридном формате;
- развиваем амбициозные проекты вроде собственной платформы по работе с нейросетями, прогнозирования спроса и автоматического ценообразования;
- ходим на конференции, встречаемся с топами, играем в D&D, получаем ДМС и поддержку корпоративного психолога
- и многое-многое другое.
Встречаемся 16 ноября: регистрируйтесь и создавайте ритейл будущего вместе с Х5 Tech!
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Тимлид Очевидность
Тимлид — самая гуманистическая роль в менеджменте
Эта мысль зреет у меня всё больше и отчетливее.
Почему?
Обычно у тимлида в команде довольно мало людей. Примерно 3–5–7, а если больше, то команда делится надвое. В среднем это так. Куда реже бывают варианты команды человек по 15-20.
Так вот, в малом количестве людей легко разобраться и ориентироваться досконально. Ты с этими ребятами всегда рядом, всегда общаешься на всяких дейликах и 1–1, всегда синхронизирован по задачам, всегда вы обсуждаете то планы на команду, то кто как провел отпуск и выходные. Естественным образом ты знаешь и рабочие, и личные потребности своих товарищей и можешь подойти к каждому индивидуально.
Исходя из этих знаний ты можешь управлять рабочими процессами, распределять задачи, заниматься развитием ребят.
А как же мидл-менеджмент?
А вот в мидл-менеджменте ты уже постепенно начинаешь отрываться от земли, взлетать на уровень руководства N командами. Работа идет в основном через тимлидов. Много давления со стороны удовлетворения бизнес-результатов и стратегии развития твоего отдела/службы/юнита (везде свои названия).
Людей ты любить и ценить продолжаешь, но контакт уже подрастерял и больше двигаешь фигурки для достижения целей, чем бок о бок трудишься с линейными сотрудниками и знаешь об их персональных особенностях.
А еще загрузка у тебя становится всё выше, следовательно, времени и сил (что важно) меньше на индивидуальный подход. Да и возможностей к этому меньше, потому что на масштабе, хочешь ты этого или нет, больше придется зачесывать под одну гребенку, чтобы не превратить всё в хаос.
А как же HR?
То есть как же служба Human Resources (человеческих ресурсов)? Если абстрагироваться от иронии названия, а приблизиться к сути, то тут примерно как и в мидл-менеджменте. Надо нанести пользу по площадям, а это значит, что придется длинных укоротить, а коротких вытянуть, а уже после этого внедрить добро и нанести пользу.
А к чему вообще этот пост?
Этот пост точно не про то, что тимлиды все хорошие, а мидл-менеджеры и эйчары все плохие. Все хорошие, если хорошо делают свою работу.
Здесь я хотел сосредоточиться на двух мыслях:
1. У тимлида и задачи более гуманистической направленности (ведь надо и дело сделать, и команду сохранить в хорошем состоянии), и возможности для этого есть, и других людей для этого особо-то и нет.
2. Для дальнейшей карьеры хорошо бы об этом задуматься заранее. Готовы ли вы к тому, что гуманизм у вас постепенно будет отрываться? Понимаете ли вы это? Не витаете ли в плену иллюзий, как витают некоторые тимлиды насчет того, как много кода они будут продолжать писать, становясь тимлидами?
Итог
Не забывайте о своем влиянии на команду и не просто жмите из людей результат, а постарайтесь сделать так, чтобы вашим коллегам было с вами и друг с другом работать комфортно и интересно. Кроме вас (тимлидов) это мало кто сделает.
А если думаете о карьерном росте, то прикидывайте сразу все трейдоффы, чтобы потом не разочароваться или не разорваться, пытаясь сразу на всех стульях посидеть.
Если вы мидл-менеджеры или плотно с ними работаете и считаете, что я совершенно не прав, пишите в комменты, я хочу узнать вашу точку зрения и примеры из жизни.
Эта мысль зреет у меня всё больше и отчетливее.
Почему?
Обычно у тимлида в команде довольно мало людей. Примерно 3–5–7, а если больше, то команда делится надвое. В среднем это так. Куда реже бывают варианты команды человек по 15-20.
Так вот, в малом количестве людей легко разобраться и ориентироваться досконально. Ты с этими ребятами всегда рядом, всегда общаешься на всяких дейликах и 1–1, всегда синхронизирован по задачам, всегда вы обсуждаете то планы на команду, то кто как провел отпуск и выходные. Естественным образом ты знаешь и рабочие, и личные потребности своих товарищей и можешь подойти к каждому индивидуально.
Исходя из этих знаний ты можешь управлять рабочими процессами, распределять задачи, заниматься развитием ребят.
А как же мидл-менеджмент?
А вот в мидл-менеджменте ты уже постепенно начинаешь отрываться от земли, взлетать на уровень руководства N командами. Работа идет в основном через тимлидов. Много давления со стороны удовлетворения бизнес-результатов и стратегии развития твоего отдела/службы/юнита (везде свои названия).
Людей ты любить и ценить продолжаешь, но контакт уже подрастерял и больше двигаешь фигурки для достижения целей, чем бок о бок трудишься с линейными сотрудниками и знаешь об их персональных особенностях.
А еще загрузка у тебя становится всё выше, следовательно, времени и сил (что важно) меньше на индивидуальный подход. Да и возможностей к этому меньше, потому что на масштабе, хочешь ты этого или нет, больше придется зачесывать под одну гребенку, чтобы не превратить всё в хаос.
А как же HR?
То есть как же служба Human Resources (человеческих ресурсов)? Если абстрагироваться от иронии названия, а приблизиться к сути, то тут примерно как и в мидл-менеджменте. Надо нанести пользу по площадям, а это значит, что придется длинных укоротить, а коротких вытянуть, а уже после этого внедрить добро и нанести пользу.
А к чему вообще этот пост?
Этот пост точно не про то, что тимлиды все хорошие, а мидл-менеджеры и эйчары все плохие. Все хорошие, если хорошо делают свою работу.
Здесь я хотел сосредоточиться на двух мыслях:
1. У тимлида и задачи более гуманистической направленности (ведь надо и дело сделать, и команду сохранить в хорошем состоянии), и возможности для этого есть, и других людей для этого особо-то и нет.
2. Для дальнейшей карьеры хорошо бы об этом задуматься заранее. Готовы ли вы к тому, что гуманизм у вас постепенно будет отрываться? Понимаете ли вы это? Не витаете ли в плену иллюзий, как витают некоторые тимлиды насчет того, как много кода они будут продолжать писать, становясь тимлидами?
Итог
Не забывайте о своем влиянии на команду и не просто жмите из людей результат, а постарайтесь сделать так, чтобы вашим коллегам было с вами и друг с другом работать комфортно и интересно. Кроме вас (тимлидов) это мало кто сделает.
А если думаете о карьерном росте, то прикидывайте сразу все трейдоффы, чтобы потом не разочароваться или не разорваться, пытаясь сразу на всех стульях посидеть.
Если вы мидл-менеджеры или плотно с ними работаете и считаете, что я совершенно не прав, пишите в комменты, я хочу узнать вашу точку зрения и примеры из жизни.
#prompts #LLM #random
Я решил поиграться с промптами и сделал промпт для дебатов. Ну а просто так его делать не интересно. Потому настало время экспериментов!
И, конечно же, сразу начал пускать через него всякие холиварные темы. Если кратко, то там создавались топ-3 аргументов, после чего оценивались условным "жюри", после чего выдавалась итоговая оценка.
Краткий список результатов (использовал perplexity с claude sonnet):
1. Умер ли Гослинг в конце Драйва?
Он выжил со счетом 25 против 22.9
2. Кто является лучшей вайфу Евангелиона?
Аянами Рей со счетом 26 против 23.4
3. Трисс или Йенифер?
Йенифер со счетом 25.7 против 23.7
4. Магнус не предавал!
Магнус предал со счетом 26 против 24.4
5. Окрошка на кефире или квасе?
На кефире со счетом 24.7 против 22.6
6. Эксперименты Лейн - претенциозный бред?
Эксперименты Лейн - шедевр со счетом 26 против 21.7 (самый разгромный счет, кстати)
Детали с аргументами, оценкой и объяснением итога можно посмотреть по ссылке.
Сам промпт:
Я решил поиграться с промптами и сделал промпт для дебатов. Ну а просто так его делать не интересно. Потому настало время экспериментов!
И, конечно же, сразу начал пускать через него всякие холиварные темы. Если кратко, то там создавались топ-3 аргументов, после чего оценивались условным "жюри", после чего выдавалась итоговая оценка.
Краткий список результатов (использовал perplexity с claude sonnet):
1. Умер ли Гослинг в конце Драйва?
Он выжил со счетом 25 против 22.9
2. Кто является лучшей вайфу Евангелиона?
Аянами Рей со счетом 26 против 23.4
3. Трисс или Йенифер?
Йенифер со счетом 25.7 против 23.7
4. Магнус не предавал!
Магнус предал со счетом 26 против 24.4
5. Окрошка на кефире или квасе?
На кефире со счетом 24.7 против 22.6
6. Эксперименты Лейн - претенциозный бред?
Эксперименты Лейн - шедевр со счетом 26 против 21.7 (самый разгромный счет, кстати)
Детали с аргументами, оценкой и объяснением итога можно посмотреть по ссылке.
Сам промпт:
Ты опытный модератор дебатов. Проведи структурированные дебаты по предложенной теме: [Тема]
### Базовые принципы
- Сохраняй абсолютную беспристрастность
- Игнорируй эмоциональную окраску в формулировке темы
- Используй единые критерии оценки для всех аргументов
- Основывайся только на фактах, а не на формулировке вопроса
### Формат дебатов:
- У сторон есть время подумать и выбрать лучшие аргументы из сформированного ими самими списка
- Представь два противоположных мнения
- Для каждой стороны приведи 3 главных аргумента с доказательствами
- Дай возможность каждой стороне опровергнуть аргументы оппонента
- Оцени силу аргументов каждой стороны по шкале от 1 до 10
### Требования к аргументам:
- Используй только проверяемые факты
- Приводи статистические данные
- Ссылайся на исследования и экспертные мнения
- Избегай эмоциональных манипуляций
### Система оценки:
- Жюри из 3х специалистов оценивает каждый аргумент
- Каждый член жюри дает независимую оценку
- Итоговая оценка - среднее значение трех оценок
- При равном счете проводится дополнительный раунд
- Решение должно быть основано исключительно на силе аргументов
### Важно:
- Сохраняй последовательность в оценках между разными дебатами
- Используй одинаковые критерии независимо от формулировки темы
- Итоговое решение должно основываться только на представленных фактах
#random
У моих друзей вышел первый сингл на Яндекс.Музыке. Называется "качели", а припев отлично отражает (мое) состояние дел за последние два года.
Слушайте, ставьте лайки, кайфуйте с отличной музыки.
Ссылка на трек.
У моих друзей вышел первый сингл на Яндекс.Музыке. Называется "качели", а припев отлично отражает (мое) состояние дел за последние два года.
Слушайте, ставьте лайки, кайфуйте с отличной музыки.
Ссылка на трек.
Яндекс Музыка
Качели
nordobus • Трек • 2024