Notice: file_put_contents(): Write of 6157 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 4096 of 10253 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Расширение функций мозга | Telegram Webview: augmented_brain/7689 -
Telegram Group & Telegram Channel
18 декабря выступает Логотетис; только я не понял. где. Возможно, в Кремлевском дворце съездов, но, может, я что-то недопонял.

Во всяком случае вот, что он имеет нам сообщить:

Decades of experimental work in animals and humans suggests that various oscillatory patterns, including single or multiple cycle short-lasting episodes, reflect state changes of self-organizing large-scale networks. Such patterns, including so-called slow-oscillations, K complexes (KC), spindles, hippocampal sharp wave ripples (SPW-R), and pontine-geniculate-occipital (PGO) waves, regulate cognitive capacities, such as learning, memory encoding and consolidation, and memory-guided decision making. Although studied in detail with neurophysiological methods, the global effects of the aforementioned episodic events on the entire brain remained elusive, primarily due to a dearth of methodologies permitting concurrent recordings in various neural structure and whole-brain activity mapping.

In an attempt to study the topology and dynamics of networks associated with episodic events, we have recently developed and applied so-called neural event triggered functional magnetic resonance imaging (NET-fMRI). This method permits concurrent multi-structure and multi-site intracranial recordings and the fMRI of whole-brain activity in 60-70 regions of interest [ROI] corresponding to various cortical areas and subcortical structures or nuclei.


Initial recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, showed that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicated that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas.

These findings suggest that during off-line memory consolidation synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centers involved in sensory processing or potentially mediating procedural learning. Strongly suppressed during the SPW-R events was also the entire pontine region. The negative BOLD responses in pons may be related to suppression of cholinergic neurons in the brainstem, including those inducing PGO waves during the hippocampal-cortical dialog. Notably, REM and PGO are both related to procedural learning and synaptic consolidation [4], and network states related to synaptic and system consolidation may have synergistic or antagonistic interactions depending on learning/encoding phase, short-term retention of information, or long-term consolidation. To understand such interactions at the large-scale network level, we applied our multimodal and multiscale methodology and examined the topology of neural networks activated during the occurrence of SPW-R and PGO waves, with concurrent fMRI and Hippocampus, LGN, Pulvinar and Pons (C-PBL) recordings. The results were both novel and surprising. Hippocampal ripples, theta and pontine PGO waves have state-dependent interactions rather than emerging in tow different sleep-states. The so-called Multistructure Activity measured with fMRI reveals was also unexpected and its specificity can be now used for event identification.



group-telegram.com/augmented_brain/7689
Create:
Last Update:

18 декабря выступает Логотетис; только я не понял. где. Возможно, в Кремлевском дворце съездов, но, может, я что-то недопонял.

Во всяком случае вот, что он имеет нам сообщить:

Decades of experimental work in animals and humans suggests that various oscillatory patterns, including single or multiple cycle short-lasting episodes, reflect state changes of self-organizing large-scale networks. Such patterns, including so-called slow-oscillations, K complexes (KC), spindles, hippocampal sharp wave ripples (SPW-R), and pontine-geniculate-occipital (PGO) waves, regulate cognitive capacities, such as learning, memory encoding and consolidation, and memory-guided decision making. Although studied in detail with neurophysiological methods, the global effects of the aforementioned episodic events on the entire brain remained elusive, primarily due to a dearth of methodologies permitting concurrent recordings in various neural structure and whole-brain activity mapping.

In an attempt to study the topology and dynamics of networks associated with episodic events, we have recently developed and applied so-called neural event triggered functional magnetic resonance imaging (NET-fMRI). This method permits concurrent multi-structure and multi-site intracranial recordings and the fMRI of whole-brain activity in 60-70 regions of interest [ROI] corresponding to various cortical areas and subcortical structures or nuclei.


Initial recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, showed that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicated that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas.

These findings suggest that during off-line memory consolidation synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centers involved in sensory processing or potentially mediating procedural learning. Strongly suppressed during the SPW-R events was also the entire pontine region. The negative BOLD responses in pons may be related to suppression of cholinergic neurons in the brainstem, including those inducing PGO waves during the hippocampal-cortical dialog. Notably, REM and PGO are both related to procedural learning and synaptic consolidation [4], and network states related to synaptic and system consolidation may have synergistic or antagonistic interactions depending on learning/encoding phase, short-term retention of information, or long-term consolidation. To understand such interactions at the large-scale network level, we applied our multimodal and multiscale methodology and examined the topology of neural networks activated during the occurrence of SPW-R and PGO waves, with concurrent fMRI and Hippocampus, LGN, Pulvinar and Pons (C-PBL) recordings. The results were both novel and surprising. Hippocampal ripples, theta and pontine PGO waves have state-dependent interactions rather than emerging in tow different sleep-states. The so-called Multistructure Activity measured with fMRI reveals was also unexpected and its specificity can be now used for event identification.

BY Расширение функций мозга


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/augmented_brain/7689

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read."
from us


Telegram Расширение функций мозга
FROM American