Telegram Group & Telegram Channel
# Поиск работы: разбор тестового задания Planetfarms

Дано видео на пол минуты с камеры на капоте радиоуправляемой машинки. Нужно следить за машинкой, которая едет впереди. Координаты этой машинки на первом кадре даны. Видео непростое: камера прыгает, цель пропадает из кадра, вылезает много объектов включая вторую идентичную машинку. Для выполнения надо использовать предобученную модель детекции, Faster-RCNN. Нельзя ничего обучать. Было указано, что задание примерно на пару часов.

Посмотрел видео. Было не очень понятно, сколько на нем нужно трекать эту машинку, поэтому я решил делать, пока не получится отслеживать в течение всего видео.

Я не работал с детекцией, поэтому полез изучать, кто такой Faster-RCNN. Разобравшись попробовал запустить на паре кадров. Сеть принимает на вход изображение, а выдает кучу ббоксов (bounding box, прямоугольники вокруг объектов) для найденных объектов, а так же вероятности, что объект относится к одному из 1000 классов Imagenet. Окей, но надо обрабатывать не изображения, а видео. Пришлось работать с видео как с последовательностью изображений.

Начальная позиция машинки дана, так что ближайший к ней ббокс и нужно трекать. Главная проблема вот в сопоставлении. Есть куча ббоксов на фрейме 1, куча ббоксов на фрейме 2. Нужно определить, какие пары относятся к одним и тем же сущностям.

Очевидно, что два ближайших ббокса это один объект. Близость определяем по евклидовому расстоянию между центрами. Погуглил и оказалось, что я изобрел centroid tracker. Сразу вылезла тонна проблем. Например: машинка подъезжает близко, а потом резко отъезжает. Трекинг "перескакивает" на капот машины с камерой и успешно следит за ним до конца видео. Или машинка подпрыгивает на кочке и трекинг переключается на какое-нибудь дерево. Или когда две машинки подъезжают слишком близко и трекинг "перепрыгивает" на вторую. Наконец, непонятно что делать, когда машинка совсем пропадает из кадра.

Сначала я потюнил параметры модели и подобрал порог отсева ббоксов по вероятностям. Далее отсеял лишние ббоксы грубыми эвристиками. На видео дорога всегда в маленьком прямоугольнике в центре кадра. Обрезал все ббоксы, которые в него не попадают. Отфильтровал все слишком вытянутые в ширину или высоту ббоксы, потому что мы знаем, что машинка такой не бывает. Стало лучше.

Далее изменил метрику расстояния. Надо было учесть, что если ббокс t1 по форме похож на t2, то более вероятно, что это ббоксы одной сущности. Поэтому я стал считать расстояние между векторами из координат верхнего левого и нижнего правого углов, вида (x1, y1, x2, y2). Это учитывает форму ббоксов, расстояние между похожими меньше. Немного помогло.



group-telegram.com/boris_again/1208
Create:
Last Update:

# Поиск работы: разбор тестового задания Planetfarms

Дано видео на пол минуты с камеры на капоте радиоуправляемой машинки. Нужно следить за машинкой, которая едет впереди. Координаты этой машинки на первом кадре даны. Видео непростое: камера прыгает, цель пропадает из кадра, вылезает много объектов включая вторую идентичную машинку. Для выполнения надо использовать предобученную модель детекции, Faster-RCNN. Нельзя ничего обучать. Было указано, что задание примерно на пару часов.

Посмотрел видео. Было не очень понятно, сколько на нем нужно трекать эту машинку, поэтому я решил делать, пока не получится отслеживать в течение всего видео.

Я не работал с детекцией, поэтому полез изучать, кто такой Faster-RCNN. Разобравшись попробовал запустить на паре кадров. Сеть принимает на вход изображение, а выдает кучу ббоксов (bounding box, прямоугольники вокруг объектов) для найденных объектов, а так же вероятности, что объект относится к одному из 1000 классов Imagenet. Окей, но надо обрабатывать не изображения, а видео. Пришлось работать с видео как с последовательностью изображений.

Начальная позиция машинки дана, так что ближайший к ней ббокс и нужно трекать. Главная проблема вот в сопоставлении. Есть куча ббоксов на фрейме 1, куча ббоксов на фрейме 2. Нужно определить, какие пары относятся к одним и тем же сущностям.

Очевидно, что два ближайших ббокса это один объект. Близость определяем по евклидовому расстоянию между центрами. Погуглил и оказалось, что я изобрел centroid tracker. Сразу вылезла тонна проблем. Например: машинка подъезжает близко, а потом резко отъезжает. Трекинг "перескакивает" на капот машины с камерой и успешно следит за ним до конца видео. Или машинка подпрыгивает на кочке и трекинг переключается на какое-нибудь дерево. Или когда две машинки подъезжают слишком близко и трекинг "перепрыгивает" на вторую. Наконец, непонятно что делать, когда машинка совсем пропадает из кадра.

Сначала я потюнил параметры модели и подобрал порог отсева ббоксов по вероятностям. Далее отсеял лишние ббоксы грубыми эвристиками. На видео дорога всегда в маленьком прямоугольнике в центре кадра. Обрезал все ббоксы, которые в него не попадают. Отфильтровал все слишком вытянутые в ширину или высоту ббоксы, потому что мы знаем, что машинка такой не бывает. Стало лучше.

Далее изменил метрику расстояния. Надо было учесть, что если ббокс t1 по форме похож на t2, то более вероятно, что это ббоксы одной сущности. Поэтому я стал считать расстояние между векторами из координат верхнего левого и нижнего правого углов, вида (x1, y1, x2, y2). Это учитывает форму ббоксов, расстояние между похожими меньше. Немного помогло.

BY Борис опять


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/boris_again/1208

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. For tech stocks, “the main thing is yields,” Essaye said. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. Anastasia Vlasova/Getty Images The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp.
from us


Telegram Борис опять
FROM American