Telegram Group & Telegram Channel
ХОЛОДНЫЙ РАСЧЕТ ∅
🔮 Риск рецессии: Рынок госдолга vs. Экономисты • Наш индикатор вероятности рецессии опирается на разницу между доходностями на ближнем и длиннем концах кривой доходности госдолга - ее "наклоне" В этом спреде есть полезный сигнал о риске рецессии по одной…
🐍 Риск рецессии: Как оценить самостоятельно?

• После заседания наклон кривой снизился с 2.9 процентных пунктов до 0.5 процентного пункта: меньше наклон => меньше предложение кредита => выше вероятность рецессии

Наша оценка риска выросла до 21%, но эти оценки зависят от большого числа относительно произвольных решений при выборе модели:

• какие месяцы в прошлом были рецессией, а какие нет?

• как мерять наклон кривой: как разницу доходностями 10 лет и 3 мес.? 5 лет и 2 года? 10 и 2 года?

• строим опережающий или одновременный индикатор риска? опережающий на сколько месяцев? и так далее

🪄 Вы можете самостоятельно построить свой индикатор риска рецессии за пару шагов:

• Загружаем pandas и sklearn:

import pandas as pd
from sklearn.linear_model import LogisticRegression


• забираем данные об исторических значениях кривой доходности у МосБрижи

• Сохраняем их в файлик и считаем там наклон 'slope':

df_yc_cc = pd.read_excel(PATH, index_col='ds')

• Определяем рецессию по вкусу:

df_rec = pd.DataFrame(index = pd.date_range(start='2003-01',end='2023-08',freq='MS'))

df_rec['R'] = 0
df_rec.loc['2008-09':'2009-02','R'] = 1
df_rec.loc['2014-11':'2015-06','R'] = 1
df_rec.loc['2019-12':'2020-06','R'] = 1
df_rec.loc['2021-11':'2022-06','R'] = 1


• Складываем наклон и переменную рецессии вместе:

df_xy = pd.merge(
df_yc[['slope']]
, df_rec[['R']]
, left_index=True
, right_index=True) \
.dropna()
X, y = df_xy[['slope']], df_xy['R']


• Оцениваем логит:

mod_lr = LogisticRegression()
mod_lr.fit(X, y)


• Готово - можем подставить какой-то наклон x и оценить риск рецессии:

x = XXX
mod_lr.predict_proba(pd.DataFrame(data=[[x]],columns=['slope']))

@c0ldness



group-telegram.com/c0ldness/1675
Create:
Last Update:

🐍 Риск рецессии: Как оценить самостоятельно?

• После заседания наклон кривой снизился с 2.9 процентных пунктов до 0.5 процентного пункта: меньше наклон => меньше предложение кредита => выше вероятность рецессии

Наша оценка риска выросла до 21%, но эти оценки зависят от большого числа относительно произвольных решений при выборе модели:

• какие месяцы в прошлом были рецессией, а какие нет?

• как мерять наклон кривой: как разницу доходностями 10 лет и 3 мес.? 5 лет и 2 года? 10 и 2 года?

• строим опережающий или одновременный индикатор риска? опережающий на сколько месяцев? и так далее

🪄 Вы можете самостоятельно построить свой индикатор риска рецессии за пару шагов:

• Загружаем pandas и sklearn:

import pandas as pd
from sklearn.linear_model import LogisticRegression


• забираем данные об исторических значениях кривой доходности у МосБрижи

• Сохраняем их в файлик и считаем там наклон 'slope':

df_yc_cc = pd.read_excel(PATH, index_col='ds')

• Определяем рецессию по вкусу:

df_rec = pd.DataFrame(index = pd.date_range(start='2003-01',end='2023-08',freq='MS'))

df_rec['R'] = 0
df_rec.loc['2008-09':'2009-02','R'] = 1
df_rec.loc['2014-11':'2015-06','R'] = 1
df_rec.loc['2019-12':'2020-06','R'] = 1
df_rec.loc['2021-11':'2022-06','R'] = 1


• Складываем наклон и переменную рецессии вместе:

df_xy = pd.merge(
df_yc[['slope']]
, df_rec[['R']]
, left_index=True
, right_index=True) \
.dropna()
X, y = df_xy[['slope']], df_xy['R']


• Оцениваем логит:

mod_lr = LogisticRegression()
mod_lr.fit(X, y)


• Готово - можем подставить какой-то наклон x и оценить риск рецессии:

x = XXX
mod_lr.predict_proba(pd.DataFrame(data=[[x]],columns=['slope']))

@c0ldness

BY ХОЛОДНЫЙ РАСЧЕТ ∅





Share with your friend now:
group-telegram.com/c0ldness/1675

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” False news often spreads via public groups, or chats, with potentially fatal effects. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from us


Telegram ХОЛОДНЫЙ РАСЧЕТ ∅
FROM American