Telegram Group & Telegram Channel
Непрерывное математическое образование
X³+Y³+Z³-3XYZ
Как разложить F:=X³+Y³+Z³-3XYZ на множители? Вот несколько возможных подходов.

1) Если поверить, что это возможно, то один из множителей линейный. Проверим, делится ли это выражение на симметричный линейный множитель, X+Y+Z. Ну, если X+Y+Z=0, то Z=-(X+Y) и X³+Y³+Z³=X³+Y³-(X+Y)³=-3X²Y-3XY²=-3XY(X+Y)=3XYZ. То есть X³+Y³+Z³-3XYZ=0 (mod X+Y+Z). Дальше можно разделить F на X+Y+Z в столбик просто.

2) Насколько X³+Y³+Z³ отличается от (X+Y+Z)³? X³+Y³+Z³=(X+Y+Z)³-3(X+Y+Z)(XY+YZ+ZX)+3XYZ (можно сказать, что мы выразили левую часть через элементарные симметрические многочлены). Видим, что F=(X+Y+Z)((X+Y+Z)²-3(XY+YZ+ZX))=(X+Y+Z)(X²+Y²+Z²-XY-YZ-ZX).

Дальше на этом пути можно пытаться выразить суммы n-х степеней через элементарные симметрические (“формулы Ньютона”).

3) F — определитель матрицы
|X Y Z|
|Z X Y|
|Y Z X|
Если прибавить к первой строке две остальные, то видно, что он делится на (X+Y+Z). Оставшийся определитель легко посчитать, но можно вместо этого заметить, что по аналогичной причине определитель делится на (X+wY+w²Z) и (X+w²Y+wZ), где w — кубический корень из 1.

Это вычисление несложно обобщить на определитель F_n матрицы X_{i-j mod n}. Но на этом история не заканчивается, скорее только начинается. И это история про Фробениуса и теорию представлений конечных групп — можно посмотреть по этому поводу текст K.Conrad’а, https://kconrad.math.uconn.edu/articles/groupdet.pdf



group-telegram.com/cme_channel/4032
Create:
Last Update:

Как разложить F:=X³+Y³+Z³-3XYZ на множители? Вот несколько возможных подходов.

1) Если поверить, что это возможно, то один из множителей линейный. Проверим, делится ли это выражение на симметричный линейный множитель, X+Y+Z. Ну, если X+Y+Z=0, то Z=-(X+Y) и X³+Y³+Z³=X³+Y³-(X+Y)³=-3X²Y-3XY²=-3XY(X+Y)=3XYZ. То есть X³+Y³+Z³-3XYZ=0 (mod X+Y+Z). Дальше можно разделить F на X+Y+Z в столбик просто.

2) Насколько X³+Y³+Z³ отличается от (X+Y+Z)³? X³+Y³+Z³=(X+Y+Z)³-3(X+Y+Z)(XY+YZ+ZX)+3XYZ (можно сказать, что мы выразили левую часть через элементарные симметрические многочлены). Видим, что F=(X+Y+Z)((X+Y+Z)²-3(XY+YZ+ZX))=(X+Y+Z)(X²+Y²+Z²-XY-YZ-ZX).

Дальше на этом пути можно пытаться выразить суммы n-х степеней через элементарные симметрические (“формулы Ньютона”).

3) F — определитель матрицы
|X Y Z|
|Z X Y|
|Y Z X|
Если прибавить к первой строке две остальные, то видно, что он делится на (X+Y+Z). Оставшийся определитель легко посчитать, но можно вместо этого заметить, что по аналогичной причине определитель делится на (X+wY+w²Z) и (X+w²Y+wZ), где w — кубический корень из 1.

Это вычисление несложно обобщить на определитель F_n матрицы X_{i-j mod n}. Но на этом история не заканчивается, скорее только начинается. И это история про Фробениуса и теорию представлений конечных групп — можно посмотреть по этому поводу текст K.Conrad’а, https://kconrad.math.uconn.edu/articles/groupdet.pdf

BY Непрерывное математическое образование


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/cme_channel/4032

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. "Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion.
from us


Telegram Непрерывное математическое образование
FROM American