Telegram Group & Telegram Channel
Непрерывное математическое образование
https://ium.mccme.ru/globus.html в четверг 17 октября на семинаре «Глобус» Юрий Прохров будет рассказывать про проблемы рациональности в алгебраической геометрии «Многообразие рационально, если оно допускает параметризацию рациональными функциями “почти…
https://ium.mccme.ru/globus.html

в четверг 7 ноября на семинаре «Глобус» Ольга Починка будет рассказывать о топологической ветке нижегородской школы нелинейных колебаний академика А.А.Андронова

15:40, конференц-зал НМУ

«Наиболее интенсивная и плодотворная деятельность А.А.Андронова как учёного, педагога и организатора развернулась в городе Горьком (ныне Нижний Новгород), куда он в 1931 году вместе с группой талантливых молодых учёных (М.Т.Грехова, В.И.Гапонов, Е.А.Леонтович, А.Г.Любина) переехал на постоянное местожительство. Здесь (вместе с учениками и коллегами) он ввел и детально разработал понятие «грубая система» — система, устойчивая к небольшим изменениям параметров. Полученный А.А.Андроновым и Л.С.Понтрягиным критерий грубости системы дифференциальных уравнений на плоскости по праву считается предвестником “гиперболической революции”, произошедшей в теории динамических систем в 60-х годах 20 века. (…) Аналоги грубых потоков на плоскости, (…) получившие название систем Морса-Смейла, оказались лишь частью многогранного гиперболического мира — это структурно устойчивые системы с конечным числом периодических точек. Как оказалось, титул "простейшие структурно устойчивые системы" совсем не отражает сути происходящего в мире систем Морса-Смейла. На сегодняшний день (благодаря серии работ нижегородско-французского коллектива: Х.Бонатти, В.З.Гринес, Е.Я.Гуревич, Е.В.Жужома, Ф.Лауденбах, В.С.Медведев, О.В.Починка) трудно указать какой-либо топологический эффект, не проявившийся в качестве инварианта такой динамической системы. (…) В начале доклада будет дан краткий обзор истории Горьковской-Нижегородской математической школы и ее вклада в теорию бифуркаций и динамических систем.»



group-telegram.com/cme_channel/3996
Create:
Last Update:

https://ium.mccme.ru/globus.html

в четверг 7 ноября на семинаре «Глобус» Ольга Починка будет рассказывать о топологической ветке нижегородской школы нелинейных колебаний академика А.А.Андронова

15:40, конференц-зал НМУ

«Наиболее интенсивная и плодотворная деятельность А.А.Андронова как учёного, педагога и организатора развернулась в городе Горьком (ныне Нижний Новгород), куда он в 1931 году вместе с группой талантливых молодых учёных (М.Т.Грехова, В.И.Гапонов, Е.А.Леонтович, А.Г.Любина) переехал на постоянное местожительство. Здесь (вместе с учениками и коллегами) он ввел и детально разработал понятие «грубая система» — система, устойчивая к небольшим изменениям параметров. Полученный А.А.Андроновым и Л.С.Понтрягиным критерий грубости системы дифференциальных уравнений на плоскости по праву считается предвестником “гиперболической революции”, произошедшей в теории динамических систем в 60-х годах 20 века. (…) Аналоги грубых потоков на плоскости, (…) получившие название систем Морса-Смейла, оказались лишь частью многогранного гиперболического мира — это структурно устойчивые системы с конечным числом периодических точек. Как оказалось, титул "простейшие структурно устойчивые системы" совсем не отражает сути происходящего в мире систем Морса-Смейла. На сегодняшний день (благодаря серии работ нижегородско-французского коллектива: Х.Бонатти, В.З.Гринес, Е.Я.Гуревич, Е.В.Жужома, Ф.Лауденбах, В.С.Медведев, О.В.Починка) трудно указать какой-либо топологический эффект, не проявившийся в качестве инварианта такой динамической системы. (…) В начале доклада будет дан краткий обзор истории Горьковской-Нижегородской математической школы и ее вклада в теорию бифуркаций и динамических систем.»

BY Непрерывное математическое образование


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/cme_channel/3996

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Anastasia Vlasova/Getty Images
from us


Telegram Непрерывное математическое образование
FROM American