Telegram Group & Telegram Channel
Предсказание свойств флуоресцентных красителей

Органические флуорофоры играют ключевую роль в различных областях, включая фармацевтику, производство красителей и пигментов, оптоэлектронику, изготовление светодиодов (OLED), светособирающих молекулярных антенн и органических солнечных элементов, экологические приложения, криптографию, биовизуализацию и создание новых материалов. Спектральные свойства флуорофоров, такие как длины волн поглощения и испускания (λabs, λem), молярный коэффициент поглощения (ε) и квантовый выход люминесценции (Φ), имеют решающее значение для их применения. Точное предсказание этих свойств может существенно минимизировать экспериментальные усилия и облегчить предварительный отбор кандидатов для конкретных применений.

Хотя вычислительные методы, такие как теория функционала плотности (DFT) и нестационарная DFT (TD-DFT), обеспечивают прогнозы оптических свойств, высокоуровневые ab initio вычисления для более точных и надежных результатов часто требуют много времени и вычислительных мощностей. В противовес этому, в последнее время машинное обучение (machine learning) и глубокое обучение (deep learning) стали эффективными альтернативами для быстрых и точных прогнозов. Ключевым шагом в подобных исследованиях является сбор, систематизация и представление в машиночитаемом формате экспериментальных данных.

В недавно вышедшей работе исследователей из Китая (JCIM, 2025📕) сообщается о создании новой базы данных оптических свойств органических флуоресцентных красителей в различных растворителях (всего 36 756 пар краситель-растворитель), на основе которой авторам удалось разработать модель, способную одновременно предсказывать λabs, λem, ε и Φ с достаточно хорошей точностью. Исследователи создали приложение, Fluor-predictor (https://github.com/wenxiang-Song/fluor_pred ), с помощью которого можно пользоваться собранной базой и предсказывать оптические характеристики органических красителей.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/color_quant/110
Create:
Last Update:

Предсказание свойств флуоресцентных красителей

Органические флуорофоры играют ключевую роль в различных областях, включая фармацевтику, производство красителей и пигментов, оптоэлектронику, изготовление светодиодов (OLED), светособирающих молекулярных антенн и органических солнечных элементов, экологические приложения, криптографию, биовизуализацию и создание новых материалов. Спектральные свойства флуорофоров, такие как длины волн поглощения и испускания (λabs, λem), молярный коэффициент поглощения (ε) и квантовый выход люминесценции (Φ), имеют решающее значение для их применения. Точное предсказание этих свойств может существенно минимизировать экспериментальные усилия и облегчить предварительный отбор кандидатов для конкретных применений.

Хотя вычислительные методы, такие как теория функционала плотности (DFT) и нестационарная DFT (TD-DFT), обеспечивают прогнозы оптических свойств, высокоуровневые ab initio вычисления для более точных и надежных результатов часто требуют много времени и вычислительных мощностей. В противовес этому, в последнее время машинное обучение (machine learning) и глубокое обучение (deep learning) стали эффективными альтернативами для быстрых и точных прогнозов. Ключевым шагом в подобных исследованиях является сбор, систематизация и представление в машиночитаемом формате экспериментальных данных.

В недавно вышедшей работе исследователей из Китая (JCIM, 2025📕) сообщается о создании новой базы данных оптических свойств органических флуоресцентных красителей в различных растворителях (всего 36 756 пар краситель-растворитель), на основе которой авторам удалось разработать модель, способную одновременно предсказывать λabs, λem, ε и Φ с достаточно хорошей точностью. Исследователи создали приложение, Fluor-predictor (https://github.com/wenxiang-Song/fluor_pred ), с помощью которого можно пользоваться собранной базой и предсказывать оптические характеристики органических красителей.

BY Квант Цвета




Share with your friend now:
group-telegram.com/color_quant/110

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. Some privacy experts say Telegram is not secure enough On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. In 2018, Russia banned Telegram although it reversed the prohibition two years later. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app.
from us


Telegram Квант Цвета
FROM American