Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/compmathweekly/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Компьютерная математика Weekly | Telegram Webview: compmathweekly/17 -
Telegram Group & Telegram Channel
дайджест комментариев: разбиения на доминошки

коллеги, спасибо большое за содержательные комментарии и вообще

1.
С.Шашков сделал веб-версию перемешивания ацтекского брильянта: https://shashkovs.ru/i/Aztec.html

Нравится и как конкретно это выглядит, и вообще идея превращения таких программ в веб-страницы — особ. удобно, если хочется поделиться на кружке, докладе и т.п.

Переход от несложного питона к джаваскрипту выглядит посильным — мб попробую при случае что-то сделать и на джаваскрипте.

2.
Л.Петров обращает внимание на то, что случайное разбиение ацтекского брильянта на доминошки радикально быстрее генерировать не применяя много случайных флипов, а при помощи domino shuffling.

В качестве популярного введения — советую видео https://youtu.be/Yy7Q8IWNfHM Mathologer'а. Для тех, кто читал брошюру Е.Смирнова про ацтекские брильянты, — это примерно то же, что описанное там «расширение площадей».

3.
Р.Гусарев напоминает, что разбиения квадрата 8×8 на доминошки намного быстрее считать не в лоб, а «динамикой по профилю».

Эту идею давайте в таком виде упакую. Если считать просто разбиения прямоугольника, say, 3×N, то эти числа P(n) никакой очевидной рекурренте не удовлетворяют. Почему? Ну просто потому, что если мы выкидываем все доминошки, покрывающие последний столбец, то остается не прямоугольник, а прямоугольник с дырками в самом правом столбце. Но это значит, что если думать про тройку (P(n),Q(n),P(n-1),Q(n-1)), где Q(n) — количество разбиений прямоугольника 3×N без верхней правой клетки, P(n-1) — количество разбиений без всего правого столбца, S(n-1) — только с одной клеткой в самом правом столбце, то следующая четверка линейно выражается через предыдущую!

Реализовал это вот так (и теперь, действительно, даже разбиения прямоугольника 8×64 считаются мгновенно):

def is_good(mask,n):
# mask кодирует последовательность из n нулей и единиц
# функция проверяет, можно ли замостить нули доминошками
if mask == 0:
return n%2 == 0
if mask%4 == 0:
return is_good(mask>>2,n-2)
if mask%4 == 2:
return False
return is_good(mask>>1,n-1)

def tilings(n,m):
ext = [ [1 if mask&perp==0 and is_good(mask+perp,n) else 0
for perp in range(2**n)] for mask in range(2**n)]
# ext[mask][perp]: можно ли положить перпендикулярные
# нашему ряду доминошки, чтобы не задеть маску,
# а остаток чтобы разбился на доминошки в ряду
ans = [1 if mask==0 else 0 for mask in range(2**n)]
for _ in range(m):
newans = [0] * (2**n)
for mask in range(2**n):
for oldmask in range(2**n):
newans[mask] += ext[mask][oldmask]*ans[oldmask]
# видно, что шаг есть умножение матрицы на вектор
ans = newans
return ans[0]

print(tilings(8,64))



group-telegram.com/compmathweekly/17
Create:
Last Update:

дайджест комментариев: разбиения на доминошки

коллеги, спасибо большое за содержательные комментарии и вообще

1.
С.Шашков сделал веб-версию перемешивания ацтекского брильянта: https://shashkovs.ru/i/Aztec.html

Нравится и как конкретно это выглядит, и вообще идея превращения таких программ в веб-страницы — особ. удобно, если хочется поделиться на кружке, докладе и т.п.

Переход от несложного питона к джаваскрипту выглядит посильным — мб попробую при случае что-то сделать и на джаваскрипте.

2.
Л.Петров обращает внимание на то, что случайное разбиение ацтекского брильянта на доминошки радикально быстрее генерировать не применяя много случайных флипов, а при помощи domino shuffling.

В качестве популярного введения — советую видео https://youtu.be/Yy7Q8IWNfHM Mathologer'а. Для тех, кто читал брошюру Е.Смирнова про ацтекские брильянты, — это примерно то же, что описанное там «расширение площадей».

3.
Р.Гусарев напоминает, что разбиения квадрата 8×8 на доминошки намного быстрее считать не в лоб, а «динамикой по профилю».

Эту идею давайте в таком виде упакую. Если считать просто разбиения прямоугольника, say, 3×N, то эти числа P(n) никакой очевидной рекурренте не удовлетворяют. Почему? Ну просто потому, что если мы выкидываем все доминошки, покрывающие последний столбец, то остается не прямоугольник, а прямоугольник с дырками в самом правом столбце. Но это значит, что если думать про тройку (P(n),Q(n),P(n-1),Q(n-1)), где Q(n) — количество разбиений прямоугольника 3×N без верхней правой клетки, P(n-1) — количество разбиений без всего правого столбца, S(n-1) — только с одной клеткой в самом правом столбце, то следующая четверка линейно выражается через предыдущую!

Реализовал это вот так (и теперь, действительно, даже разбиения прямоугольника 8×64 считаются мгновенно):


def is_good(mask,n):
# mask кодирует последовательность из n нулей и единиц
# функция проверяет, можно ли замостить нули доминошками
if mask == 0:
return n%2 == 0
if mask%4 == 0:
return is_good(mask>>2,n-2)
if mask%4 == 2:
return False
return is_good(mask>>1,n-1)

def tilings(n,m):
ext = [ [1 if mask&perp==0 and is_good(mask+perp,n) else 0
for perp in range(2**n)] for mask in range(2**n)]
# ext[mask][perp]: можно ли положить перпендикулярные
# нашему ряду доминошки, чтобы не задеть маску,
# а остаток чтобы разбился на доминошки в ряду
ans = [1 if mask==0 else 0 for mask in range(2**n)]
for _ in range(m):
newans = [0] * (2**n)
for mask in range(2**n):
for oldmask in range(2**n):
newans[mask] += ext[mask][oldmask]*ans[oldmask]
# видно, что шаг есть умножение матрицы на вектор
ans = newans
return ans[0]

print(tilings(8,64))

BY Компьютерная математика Weekly




Share with your friend now:
group-telegram.com/compmathweekly/17

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war.
from us


Telegram Компьютерная математика Weekly
FROM American