Telegram Group & Telegram Channel
🧠 Cartridges: как ускорить LLM в 26 раз без потери качества

Что, если вместо того, чтобы каждый раз загонять в контекст LLM весь репозиторий, мы предварительно обучим мини-контекст — и будем просто вставлять его при генерации?

🔍 Это и есть идея Cartridges — небольшой KV-кэш, обученный заранее с помощью метода self-study (обучение во время инференса).

📦 Репозиторий: содержит код для тренировки "картриджа" — легкого представления большого текстового дампа (например, всей кодовой базы), которое вставляется в LLM как контекст.

📉 Проблема:
• Если вставлять много текста в LLM, KV-кэш раздувается, скорость падает, стоимость растёт

🚀 Решение:
• Обучаем маленький KV-кэш для документации или репо
• Используем его как "сжатый контекст" при генерации

📈 Результаты:
• До 26× ускорения
• Качество ответов сохраняется
• Простая реализация и универсальный подход

📖 Подробнее в статье: *Cartridges: Lightweight and general-purpose long context representations via self-study*

git clone https://github.com/HazyResearch/cartridges && cd cartridges
pip install uv
uv pip install -e .


📎 Идея простая, но мощная: пусть LLM "запоминает" ваш проект заранее — и работает с ним быстро, как с привычным знанием.

Github



group-telegram.com/data_analysis_ml/3656
Create:
Last Update:

🧠 Cartridges: как ускорить LLM в 26 раз без потери качества

Что, если вместо того, чтобы каждый раз загонять в контекст LLM весь репозиторий, мы предварительно обучим мини-контекст — и будем просто вставлять его при генерации?

🔍 Это и есть идея Cartridges — небольшой KV-кэш, обученный заранее с помощью метода self-study (обучение во время инференса).

📦 Репозиторий: содержит код для тренировки "картриджа" — легкого представления большого текстового дампа (например, всей кодовой базы), которое вставляется в LLM как контекст.

📉 Проблема:
• Если вставлять много текста в LLM, KV-кэш раздувается, скорость падает, стоимость растёт

🚀 Решение:
• Обучаем маленький KV-кэш для документации или репо
• Используем его как "сжатый контекст" при генерации

📈 Результаты:
• До 26× ускорения
• Качество ответов сохраняется
• Простая реализация и универсальный подход

📖 Подробнее в статье: *Cartridges: Lightweight and general-purpose long context representations via self-study*

git clone https://github.com/HazyResearch/cartridges && cd cartridges
pip install uv
uv pip install -e .


📎 Идея простая, но мощная: пусть LLM "запоминает" ваш проект заранее — и работает с ним быстро, как с привычным знанием.

Github

BY Анализ данных (Data analysis)




Share with your friend now:
group-telegram.com/data_analysis_ml/3656

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford.
from us


Telegram Анализ данных (Data analysis)
FROM American