Telegram Group & Telegram Channel
Почему графы?

В комментариях к новому интро задали понятный вопрос: как так сложилось, что я занимаюсь графами? Об этом я и сам частенько задумываюсь 🤪, так что пора и вам рассказать.

Для начала – немного истории: моё первое знакомство с около-рисёрчем по графам произошло на последнем курсе бакалавриата НИУ ВШЭ – мне хотелось повыпендриваться и написать наукоёмкую выпускную работу. Тогда был расцвет графовой кластеризации: люди придумывали быстрые алгоритмы оптимизации модульности, исследовали её пределы разрешающей способности, и писали на эту тему красиво свёрстанные стостраничные обзоры. Я набрёл на новую функцию, альтернативную модульности, с говорящим названием Surprise. Для неё тогда не было показано результатов жадного алгоритма (который для модульности называется алгоритмом Лёвена), вот его я придумал, заимплементировал, и чуток побенчмаркал. Хоть тогда он никому не приглянулся, начало было положено.

После вышки я пошёл в сколтех, где мне повезло работать с Panagiotis Karras, у которому тоже были интересны графы. Сначала мы пытались придумать что-то про influence maximization, но потом, ближе к концу магистратуры, я набрёл на тему графовых эмбеддингов – вот с этого момента всё и завертелось, потому что стало понятно, что их можно глубоко изучать в аспирантуре.

В изучении графов меня подкупает несколько аспектов. Во-первых, интуитивно простая модель данных: объяснить понятие графо можно за чашкой чая бабушке. При этом в области много интересных и глубоких результатов, связывающих графы с другими областями математики. Во-вторых, широкая применимость: если ты придумаешь хороший метод решения почти любой задачи на графах, шанс, что им воспользуются учёные в прикладной области, довольно велик. В-третьих, связанность с реальным железом: из-за неприспособленности компьютеров для работы с графами, для разных размеров задач можно придумывать новые алгоритмы, которые будут использовать, например, распределённые вычисления.

Почти на любые данные можно смотреть, как на граф, а иногда это даже бывает полезно. С другой стороны, любителям машинного обучения как область для вкатывания рекомендовать графы тоже не особо хочется. 😐
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/215
Create:
Last Update:

Почему графы?

В комментариях к новому интро задали понятный вопрос: как так сложилось, что я занимаюсь графами? Об этом я и сам частенько задумываюсь 🤪, так что пора и вам рассказать.

Для начала – немного истории: моё первое знакомство с около-рисёрчем по графам произошло на последнем курсе бакалавриата НИУ ВШЭ – мне хотелось повыпендриваться и написать наукоёмкую выпускную работу. Тогда был расцвет графовой кластеризации: люди придумывали быстрые алгоритмы оптимизации модульности, исследовали её пределы разрешающей способности, и писали на эту тему красиво свёрстанные стостраничные обзоры. Я набрёл на новую функцию, альтернативную модульности, с говорящим названием Surprise. Для неё тогда не было показано результатов жадного алгоритма (который для модульности называется алгоритмом Лёвена), вот его я придумал, заимплементировал, и чуток побенчмаркал. Хоть тогда он никому не приглянулся, начало было положено.

После вышки я пошёл в сколтех, где мне повезло работать с Panagiotis Karras, у которому тоже были интересны графы. Сначала мы пытались придумать что-то про influence maximization, но потом, ближе к концу магистратуры, я набрёл на тему графовых эмбеддингов – вот с этого момента всё и завертелось, потому что стало понятно, что их можно глубоко изучать в аспирантуре.

В изучении графов меня подкупает несколько аспектов. Во-первых, интуитивно простая модель данных: объяснить понятие графо можно за чашкой чая бабушке. При этом в области много интересных и глубоких результатов, связывающих графы с другими областями математики. Во-вторых, широкая применимость: если ты придумаешь хороший метод решения почти любой задачи на графах, шанс, что им воспользуются учёные в прикладной области, довольно велик. В-третьих, связанность с реальным железом: из-за неприспособленности компьютеров для работы с графами, для разных размеров задач можно придумывать новые алгоритмы, которые будут использовать, например, распределённые вычисления.

Почти на любые данные можно смотреть, как на граф, а иногда это даже бывает полезно. С другой стороны, любителям машинного обучения как область для вкатывания рекомендовать графы тоже не особо хочется. 😐

BY epsilon correct


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/epsiloncorrect/215

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth."
from us


Telegram epsilon correct
FROM American