Telegram Group & Telegram Channel
InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation #style_transfer #paper

Статья (июнь 2024) про стилизацию картинок в задачах image-to-image. Вторая статья в серии статей (InstantStyle, InstantStyle-Plus, CSGO) от этих же авторов. На вход принимается картинка стиля (образец) и исходная картинка объекта, который хотим менять. На выход выдается сгенерированная картинка, в которой исходный объект перерисован в другом стиле.

В статье много раз отмечается, что основной фокус сделан на сохранении исходного объекта, чтобы вносить в него как можно меньше искажений при изменении стиля. Cистема построена на основе SDXL, fine-tuning не требуется, вся работа — в режиме инференса.

Обуславливание выполняется одновременно за счет нескольких механизмов:

для контента:
- картинка объекта переводится в латентное пространство и там делается инверсия в зашумленное состояние (используется модель ReNoise). С этого нового начального состояния начинается процесс денойзинга.
- картинка объекта проходит через Tile ControlNet (особый вид ControlNet, изначально предназначен для upscaling, предобучен на больших картинках, составленных из повторяющихся маленьких картинок) и подается на каждом шаге денойзинга через cross-attention.
- картинка объекта проходит через Image Adapter (IP-Adapter) и тоже подается на каждом шаге денойзинга через cross-attention.

для стиля:
- картинка стиля проходит через Style Adapter (IP-Adapter) и подается на каждом шаге денойзинга через cross-attention (в соответствии с рекомендациями InstantStyle — только в один конкретный блок U-net).
- на каждом шаге результат сравнивается с картинкой стиля через CLIP Style Similarity, и эта разность используется в качестве guidance на следующих шагах денойзинга.

🔥Project Page
💻Github
📜Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/72
Create:
Last Update:

InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation #style_transfer #paper

Статья (июнь 2024) про стилизацию картинок в задачах image-to-image. Вторая статья в серии статей (InstantStyle, InstantStyle-Plus, CSGO) от этих же авторов. На вход принимается картинка стиля (образец) и исходная картинка объекта, который хотим менять. На выход выдается сгенерированная картинка, в которой исходный объект перерисован в другом стиле.

В статье много раз отмечается, что основной фокус сделан на сохранении исходного объекта, чтобы вносить в него как можно меньше искажений при изменении стиля. Cистема построена на основе SDXL, fine-tuning не требуется, вся работа — в режиме инференса.

Обуславливание выполняется одновременно за счет нескольких механизмов:

для контента:
- картинка объекта переводится в латентное пространство и там делается инверсия в зашумленное состояние (используется модель ReNoise). С этого нового начального состояния начинается процесс денойзинга.
- картинка объекта проходит через Tile ControlNet (особый вид ControlNet, изначально предназначен для upscaling, предобучен на больших картинках, составленных из повторяющихся маленьких картинок) и подается на каждом шаге денойзинга через cross-attention.
- картинка объекта проходит через Image Adapter (IP-Adapter) и тоже подается на каждом шаге денойзинга через cross-attention.

для стиля:
- картинка стиля проходит через Style Adapter (IP-Adapter) и подается на каждом шаге денойзинга через cross-attention (в соответствии с рекомендациями InstantStyle — только в один конкретный блок U-net).
- на каждом шаге результат сравнивается с картинкой стиля через CLIP Style Similarity, и эта разность используется в качестве guidance на следующих шагах денойзинга.

🔥Project Page
💻Github
📜Paper

@gentech_lab

BY Gentech Lab






Share with your friend now:
group-telegram.com/gentech_lab/72

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said.
from us


Telegram Gentech Lab
FROM American