Telegram Group & Telegram Channel
[AI21] Jamba-1.5: Hybrid Transformer-Mamba Models at Scale
AI21 Labs Jamba Team
Статья: https://arxiv.org/abs/2408.12570
Пост: https://www.ai21.com/blog/announcing-jamba-model-family
Модели: https://huggingface.co/collections/ai21labs/jamba-15-66c44befa474a917fcf55251

Малозамеченным прошёл релиз моделей Jamba-1.5, отскейленных версий мартовской Jamba (https://www.group-telegram.com/us/gonzo_ML.com/2492).

Напомним, что Jamba — это гибрид SSM (https://www.group-telegram.com/us/gonzo_ML.com/1424) и трансформера, точнее Mamba (https://www.group-telegram.com/us/gonzo_ML.com/2148) + MoE (Mixture-of-Experts, про это мы писали много, можно начать отсюда https://www.group-telegram.com/us/gonzo_ML.com/472) + трансформерные слои.

В оригинале блок Jamba состоял из 8 слоёв, из них каждый второй MoE, всего четыре штуки; три слоя Mamba, и один трансформерный. Малое количество трансформерных слоёв позволяло уменьшить размер KV-кеша (получается в 8 раз меньше обычного трансформера с таким же количеством слоёв).

Оригинальная Jamba содержала 52B параметров, из которых активны в каждый момент были 12B (потому что MoE).

Благодаря более скромному memory footprint, модель позволяла использовать контекст размером 140k на одном GPU A100-80 Gb, намного больше, чем влезало у Llama-2 70B или Mixtral 8x7B. Полный размер контекста модели был 256k токенов. Это также позволяло использовать более крупные батчи, так что итоговый throughput начиная с размера батча 4 был выше упомянутых конкурентов.

По качеству оригинальная Jamba показала себя достойно в сравнении с Llama-2 13B-70B, Gemma 7B и Mixtral.

Это была базовая модель, никакого alignment или instruction tuning. Доступна под Apache 2.0

Теперь в августе вышло обновление, Jamba-1.5, включающая две модели:
* Jamba-1.5-Mini: 12B/52B active/total params (как оригинальная Jamba)
* Jamba-1.5-Large: 94B/398B active/total params

Пробовали блоки Mamba-2 (https://www.group-telegram.com/us/gonzo_ML.com/2718), но они оказались не лучше и в архитектуре оставили Mamba-1.

Для эффективного инференса разработали новую квантизацию ExpertsInt8, когда веса MoE и MLP квантуются в INT8, а перед вычислением приводятся к BF16, чтобы использовать быстрые BF16 кернелы. Это всё происходит внутри vLLM в fused_moe кернеле. На H100 latency ExpertsInt8 соответствует FP8, а на A100, где нет FP8, намного превосходит GPTQ.

В обучение добавили Activation Loss, так как некоторые активации вырастали до 4e6, что вроде ничему не мешало, но на всякий случай.

Throughput и latency у Jamba хороши по сравнению с конкурентами (Llama 3.1 8B, Mixtral-8x7B, Mistral Nemo 12B для Mini; Llama 3.1 70B, Mistral Large 2, Llama 3.1 405B для Large), особенно на большом размере контекста.

Обучалось на каком-то внутреннем датасете в три фазы. В pre-train по сравнению с предыдущей Jamba добавили мультиязычные данные с фокусом на English, Spanish, French, Portueguse, Italian, Dutch, German, Arabic, Hebrew. Затем был mid-training с фокусом на длинных документах. Затем post-training с SFT на качественных разговорных данных, скилл-специфичных и с длинным контекстом. Как я понял, отдельного preference tuning типа PPO/DPO не было, обошлись качественной синтетикой, фильтрацией и SFT.

Модель обучена с function calling. Я рад, что эта тема (https://www.group-telegram.com/us/gonzo_ML.com/2821) развивается.

Итоговые модели сравнимы с соразмерными конкурентами из линеек Llama-3.1, Gemma-2, Mistral-Large-2.

Отдельно проверили способности на задачах с большим контекстом через бенчмарк RULER (https://arxiv.org/abs/2404.06654) с 8 вариантами needle-in-a-haystack задач. Заявляют, что они единственные, кто поддерживает эффективный контекст в 256k, остальные хоть и заявляют большие длины, но лажают. На ∞BENCH тоже хороши.

Короче, выглядит хорошо. Кажется, это первая реально большая нетрансформерная (ну почти) модель. Лицензия у новой модели правда изменилась с Apache 2.0 на Jamba Open Model License, которая personal, revocable, и не разрешает коммерческое использование, если вы зарабатываете больше $50M в год (problems nice to have).



group-telegram.com/gonzo_ML/2903
Create:
Last Update:

[AI21] Jamba-1.5: Hybrid Transformer-Mamba Models at Scale
AI21 Labs Jamba Team
Статья: https://arxiv.org/abs/2408.12570
Пост: https://www.ai21.com/blog/announcing-jamba-model-family
Модели: https://huggingface.co/collections/ai21labs/jamba-15-66c44befa474a917fcf55251

Малозамеченным прошёл релиз моделей Jamba-1.5, отскейленных версий мартовской Jamba (https://www.group-telegram.com/us/gonzo_ML.com/2492).

Напомним, что Jamba — это гибрид SSM (https://www.group-telegram.com/us/gonzo_ML.com/1424) и трансформера, точнее Mamba (https://www.group-telegram.com/us/gonzo_ML.com/2148) + MoE (Mixture-of-Experts, про это мы писали много, можно начать отсюда https://www.group-telegram.com/us/gonzo_ML.com/472) + трансформерные слои.

В оригинале блок Jamba состоял из 8 слоёв, из них каждый второй MoE, всего четыре штуки; три слоя Mamba, и один трансформерный. Малое количество трансформерных слоёв позволяло уменьшить размер KV-кеша (получается в 8 раз меньше обычного трансформера с таким же количеством слоёв).

Оригинальная Jamba содержала 52B параметров, из которых активны в каждый момент были 12B (потому что MoE).

Благодаря более скромному memory footprint, модель позволяла использовать контекст размером 140k на одном GPU A100-80 Gb, намного больше, чем влезало у Llama-2 70B или Mixtral 8x7B. Полный размер контекста модели был 256k токенов. Это также позволяло использовать более крупные батчи, так что итоговый throughput начиная с размера батча 4 был выше упомянутых конкурентов.

По качеству оригинальная Jamba показала себя достойно в сравнении с Llama-2 13B-70B, Gemma 7B и Mixtral.

Это была базовая модель, никакого alignment или instruction tuning. Доступна под Apache 2.0

Теперь в августе вышло обновление, Jamba-1.5, включающая две модели:
* Jamba-1.5-Mini: 12B/52B active/total params (как оригинальная Jamba)
* Jamba-1.5-Large: 94B/398B active/total params

Пробовали блоки Mamba-2 (https://www.group-telegram.com/us/gonzo_ML.com/2718), но они оказались не лучше и в архитектуре оставили Mamba-1.

Для эффективного инференса разработали новую квантизацию ExpertsInt8, когда веса MoE и MLP квантуются в INT8, а перед вычислением приводятся к BF16, чтобы использовать быстрые BF16 кернелы. Это всё происходит внутри vLLM в fused_moe кернеле. На H100 latency ExpertsInt8 соответствует FP8, а на A100, где нет FP8, намного превосходит GPTQ.

В обучение добавили Activation Loss, так как некоторые активации вырастали до 4e6, что вроде ничему не мешало, но на всякий случай.

Throughput и latency у Jamba хороши по сравнению с конкурентами (Llama 3.1 8B, Mixtral-8x7B, Mistral Nemo 12B для Mini; Llama 3.1 70B, Mistral Large 2, Llama 3.1 405B для Large), особенно на большом размере контекста.

Обучалось на каком-то внутреннем датасете в три фазы. В pre-train по сравнению с предыдущей Jamba добавили мультиязычные данные с фокусом на English, Spanish, French, Portueguse, Italian, Dutch, German, Arabic, Hebrew. Затем был mid-training с фокусом на длинных документах. Затем post-training с SFT на качественных разговорных данных, скилл-специфичных и с длинным контекстом. Как я понял, отдельного preference tuning типа PPO/DPO не было, обошлись качественной синтетикой, фильтрацией и SFT.

Модель обучена с function calling. Я рад, что эта тема (https://www.group-telegram.com/us/gonzo_ML.com/2821) развивается.

Итоговые модели сравнимы с соразмерными конкурентами из линеек Llama-3.1, Gemma-2, Mistral-Large-2.

Отдельно проверили способности на задачах с большим контекстом через бенчмарк RULER (https://arxiv.org/abs/2404.06654) с 8 вариантами needle-in-a-haystack задач. Заявляют, что они единственные, кто поддерживает эффективный контекст в 256k, остальные хоть и заявляют большие длины, но лажают. На ∞BENCH тоже хороши.

Короче, выглядит хорошо. Кажется, это первая реально большая нетрансформерная (ну почти) модель. Лицензия у новой модели правда изменилась с Apache 2.0 на Jamba Open Model License, которая personal, revocable, и не разрешает коммерческое использование, если вы зарабатываете больше $50M в год (problems nice to have).

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/2903

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. In 2018, Russia banned Telegram although it reversed the prohibition two years later. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes.
from us


Telegram gonzo-обзоры ML статей
FROM American