Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/gonzo_ML/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/99 -
Telegram Group & Telegram Channel
Adaptive Attention Span in Transformers
Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, Armand Joulin
Статья: https://arxiv.org/abs/1905.07799
Бенчмарки: https://paperswithcode.com/paper/adaptive-attention-span-in-transformers

Работа идейно близкая к ACT: давайте теперь сделаем адаптивным attention span трансформера.

Проблема обычного трансформера в том, что размер контекста, по которому считается self-attention, фиксирован и кроме того не может быть большим, потому что вычисления и память растут квадратично. Для увеличения контекста недавно уже было несколько решений, например, Transformer XL или Sparse Transformer. В первом из них ввели нечто вроде рекуррентности по времени, а во втором сильно облегчили матрицу внимания за счёт факторизации. Здесь же авторы (все из FB) вводят адаптивность, слой сам определяет необходимый ему размер контекста, так что это сокращает вычислительную сложность трансформера и позволяет, где надо, иметь большой контекст.

Кроме адаптивности в обычный трансформер вводятся две модификации.

1) Относительные позиционные ембеддинги (из работы Shaw et.al, https://arxiv.org/abs/1803.02155)
2) Механизм кеширования (из работы Dai про Transformer XL, https://arxiv.org/abs/1901.02860)

Далее размер контекста (attention span) каждой головы self-attention’а выучивается независимо от других (это называется adaptive attention span) путём добавления кусочно-линейной невозрастающей функции, маскирующей attention span. Функция состоит из двух кусков: константная единица от нуля до z (выучиваемый параметр) и спадающий до нуля кусок от z до z+R (гиперпараметр).

Усовершенствованным вариантом является dynamic attention span, динамически изменяющий attention span в зависимости от текущего входа. Здесь параметр z является функцией от входа (соответствует одному полносвязному слою с сигмоидальной активацией).

Проверяли на датасетах text8 и enwiki8, пробовали модели двух размеров (маленькая: 12 слоёв и размер внутреннего эмбеддинга 512; и большая: 24 слоя и эмбеддинг 768; везде 8 голов attention’а).

Сравнивались с Transformer XL и с глубоким (64 слоя) символьным трансформером Al-Rfou (https://arxiv.org/abs/1808.04444). Большие модели получили SotA на обоих датасетах с меньшим числом параметров и с меньшими FLOPS’ами.

На практике оказывается, что нижние слои обычно оперируют коротким контекстом, а верхние -- более длинным (несколько голов используют контекст до нескольких тысяч).

В общем прикольно, работает. В целом это довольно прямолинейный перенос идеи ACT.

Всё ещё кипятите? Тогда мы идём к вам. Что там ещё у нас в сетках зашито и не является адаптивным?



group-telegram.com/gonzo_ML/99
Create:
Last Update:

Adaptive Attention Span in Transformers
Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, Armand Joulin
Статья: https://arxiv.org/abs/1905.07799
Бенчмарки: https://paperswithcode.com/paper/adaptive-attention-span-in-transformers

Работа идейно близкая к ACT: давайте теперь сделаем адаптивным attention span трансформера.

Проблема обычного трансформера в том, что размер контекста, по которому считается self-attention, фиксирован и кроме того не может быть большим, потому что вычисления и память растут квадратично. Для увеличения контекста недавно уже было несколько решений, например, Transformer XL или Sparse Transformer. В первом из них ввели нечто вроде рекуррентности по времени, а во втором сильно облегчили матрицу внимания за счёт факторизации. Здесь же авторы (все из FB) вводят адаптивность, слой сам определяет необходимый ему размер контекста, так что это сокращает вычислительную сложность трансформера и позволяет, где надо, иметь большой контекст.

Кроме адаптивности в обычный трансформер вводятся две модификации.

1) Относительные позиционные ембеддинги (из работы Shaw et.al, https://arxiv.org/abs/1803.02155)
2) Механизм кеширования (из работы Dai про Transformer XL, https://arxiv.org/abs/1901.02860)

Далее размер контекста (attention span) каждой головы self-attention’а выучивается независимо от других (это называется adaptive attention span) путём добавления кусочно-линейной невозрастающей функции, маскирующей attention span. Функция состоит из двух кусков: константная единица от нуля до z (выучиваемый параметр) и спадающий до нуля кусок от z до z+R (гиперпараметр).

Усовершенствованным вариантом является dynamic attention span, динамически изменяющий attention span в зависимости от текущего входа. Здесь параметр z является функцией от входа (соответствует одному полносвязному слою с сигмоидальной активацией).

Проверяли на датасетах text8 и enwiki8, пробовали модели двух размеров (маленькая: 12 слоёв и размер внутреннего эмбеддинга 512; и большая: 24 слоя и эмбеддинг 768; везде 8 голов attention’а).

Сравнивались с Transformer XL и с глубоким (64 слоя) символьным трансформером Al-Rfou (https://arxiv.org/abs/1808.04444). Большие модели получили SotA на обоих датасетах с меньшим числом параметров и с меньшими FLOPS’ами.

На практике оказывается, что нижние слои обычно оперируют коротким контекстом, а верхние -- более длинным (несколько голов используют контекст до нескольких тысяч).

В общем прикольно, работает. В целом это довольно прямолинейный перенос идеи ACT.

Всё ещё кипятите? Тогда мы идём к вам. Что там ещё у нас в сетках зашито и не является адаптивным?

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/99

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe.
from us


Telegram gonzo-обзоры ML статей
FROM American