Telegram Group & Telegram Channel
Training language models to follow instructions with human feedback [2022]

Те, кто на канал подписан давно, знают, что я делаю обзоры и на классику. RLHF уже можно считать таковой, но я хотел бы взглянуть на эту работу под необычным углом.

Вспомним базовый механизм:

1) Supervised Finetuning - модель файнтюнят на датасете prompt -> output, где output сгенерирован человеком
2) Для набора промптов генерируют пачки вариантов output, далее человек их сортирует, показывая, какие лучше. Учим Reward Model (RM) - модель-энкодер, которая по тексту говорит, насколько он 👍
3) Сам RL - с помощью PPO учим генератор токенов выдавать такую последовательность, которую предпочтёт RM

Итак, теперь давайте проведём RL-аналогию с Го. Действия - это токены или ходы в игре. Состояние - это контекст - весь уже сгенерированный текст или состояние доски в Го. Награда - в случае текстов это выход из Reward Model, а в Го это простая программа, которая со 100% точностью считает, кто выиграл в конце игры.

В Го мы наблюдаем стандартный феномен - это "NP-задача", в которой элементарно понять, выиграна ли игра в конце, но очень сложно сгенерировать траекторию. На доске в 19x19 клеточек генератор учат на миллионах игр, выжимая из RM кучу информации и пытаясь ей угодить. И несмотря на это, на практике приблизиться к RM невозможно, хотя человека обойти всё же удаётся.

Возвращаемся к текстовому RLHF - чем он отличается от Го? Тут несопоставимо более сложное пространство состояний и действий, чем у настольной игры, то есть разрыв между RM и генератором должен быть более существенный. Да, над разрешением проблемы работают, и Chain of Thoughts / Tree of Thoughts / o1 как раз про это - модель лучше умеет понимать по тексту, хороший ли он, и мы ищем способы вытащить из неё крутые траектории.

Но есть более фундаментальная проблема - может быть, вы догадались, это RM. Представим, что произошло нечто невероятное и наш генератор сравнялся с RM по своей крутости - аналог того, что мы в Го построили бы полное дерево по всем 10^170 состояниям. Давайте подумаем, насколько текстовая RM "крутая" вещь?

Фундаментально, её "крутость" ограничена теми данными, на которых она обучалась. У нас есть размеченный людьми датасет из предпочтений ответов, сгенерированных самим генератором (или может быть людьми в каких-то датасетах). Думаю, можно предполагать, что RM по крутости близка к LLM, делающей вывод о готовом ответе. Измеряется крутость разными вещами - например, по уровню запоминания информации она сильно лучше человека, но далека от самого интернета - иначе бы она хотя бы знала все статьи с arxiv. С логикой и решением новых задач наблюдаются сложности.

На мой взгляд, это вполне легко объясняется - у вас есть огромный трансформер, обучающийся предсказывать крутость текста, причём тексты большие, а сэмплов явно не миллиарды (уже на этапе RLHF). У RM есть 2 варианта - закодировать логический вывод, способность обучаться и человеческий интеллект во всех его проявлениях или выучить простые статистические паттерны того, какие комбинации токенов в каком примерно порядке хорошо, а какие плохо. Наиболее простое решение - второе.

Это очень хорошо видно на тестировании LLM на задаче Монти-Холла. Вы даёте модели любую задачку про 3 двери, машину и 2 козы, а у неё в 99.999% обучающих данных с таким контекстом содержится ответ "выбрать другую дверь". Вот она и выбирает другую дверь, какую бы вы модификацию задачи не дали.

Для того, чтобы модель пользовалась логикой, а не релаксированным запоминанием, нужен другой баланс объёма модели, кол-ва данных и, главное, характера данных - необходимы "adversarial"-образцы, в которых ответ неправильный только из-за логической ошибки, хотя вроде бы последовательность очень близка к верной. Тогда мы, может быть, приблизим LLM к чему-то мыслящему.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/219
Create:
Last Update:

Training language models to follow instructions with human feedback [2022]

Те, кто на канал подписан давно, знают, что я делаю обзоры и на классику. RLHF уже можно считать таковой, но я хотел бы взглянуть на эту работу под необычным углом.

Вспомним базовый механизм:

1) Supervised Finetuning - модель файнтюнят на датасете prompt -> output, где output сгенерирован человеком
2) Для набора промптов генерируют пачки вариантов output, далее человек их сортирует, показывая, какие лучше. Учим Reward Model (RM) - модель-энкодер, которая по тексту говорит, насколько он 👍
3) Сам RL - с помощью PPO учим генератор токенов выдавать такую последовательность, которую предпочтёт RM

Итак, теперь давайте проведём RL-аналогию с Го. Действия - это токены или ходы в игре. Состояние - это контекст - весь уже сгенерированный текст или состояние доски в Го. Награда - в случае текстов это выход из Reward Model, а в Го это простая программа, которая со 100% точностью считает, кто выиграл в конце игры.

В Го мы наблюдаем стандартный феномен - это "NP-задача", в которой элементарно понять, выиграна ли игра в конце, но очень сложно сгенерировать траекторию. На доске в 19x19 клеточек генератор учат на миллионах игр, выжимая из RM кучу информации и пытаясь ей угодить. И несмотря на это, на практике приблизиться к RM невозможно, хотя человека обойти всё же удаётся.

Возвращаемся к текстовому RLHF - чем он отличается от Го? Тут несопоставимо более сложное пространство состояний и действий, чем у настольной игры, то есть разрыв между RM и генератором должен быть более существенный. Да, над разрешением проблемы работают, и Chain of Thoughts / Tree of Thoughts / o1 как раз про это - модель лучше умеет понимать по тексту, хороший ли он, и мы ищем способы вытащить из неё крутые траектории.

Но есть более фундаментальная проблема - может быть, вы догадались, это RM. Представим, что произошло нечто невероятное и наш генератор сравнялся с RM по своей крутости - аналог того, что мы в Го построили бы полное дерево по всем 10^170 состояниям. Давайте подумаем, насколько текстовая RM "крутая" вещь?

Фундаментально, её "крутость" ограничена теми данными, на которых она обучалась. У нас есть размеченный людьми датасет из предпочтений ответов, сгенерированных самим генератором (или может быть людьми в каких-то датасетах). Думаю, можно предполагать, что RM по крутости близка к LLM, делающей вывод о готовом ответе. Измеряется крутость разными вещами - например, по уровню запоминания информации она сильно лучше человека, но далека от самого интернета - иначе бы она хотя бы знала все статьи с arxiv. С логикой и решением новых задач наблюдаются сложности.

На мой взгляд, это вполне легко объясняется - у вас есть огромный трансформер, обучающийся предсказывать крутость текста, причём тексты большие, а сэмплов явно не миллиарды (уже на этапе RLHF). У RM есть 2 варианта - закодировать логический вывод, способность обучаться и человеческий интеллект во всех его проявлениях или выучить простые статистические паттерны того, какие комбинации токенов в каком примерно порядке хорошо, а какие плохо. Наиболее простое решение - второе.

Это очень хорошо видно на тестировании LLM на задаче Монти-Холла. Вы даёте модели любую задачку про 3 двери, машину и 2 козы, а у неё в 99.999% обучающих данных с таким контекстом содержится ответ "выбрать другую дверь". Вот она и выбирает другую дверь, какую бы вы модификацию задачи не дали.

Для того, чтобы модель пользовалась логикой, а не релаксированным запоминанием, нужен другой баланс объёма модели, кол-ва данных и, главное, характера данных - необходимы "adversarial"-образцы, в которых ответ неправильный только из-за логической ошибки, хотя вроде бы последовательность очень близка к верной. Тогда мы, может быть, приблизим LLM к чему-то мыслящему.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/knowledge_accumulator/219

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. "Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy."
from us


Telegram Knowledge Accumulator
FROM American