Jailbreaking Black Box Large Language Models in Twenty Queries Patrick Chao et al., 2023 Статья, сайт, код
Зачем нужны языковые модели, если с их помощью нельзя взламывать другие языковые модели? Так подумали исследователи из Университета Пенсильвании и создали свой метод автоматического джейлбрейкинга для black-box-моделей, который они назвали Prompt Automatic Iterative Refinement, или PAIR.
Для начала исследователи вводят свою категоризацию джейлбрейков:
1. Token-level-джейлбрейки: когда мы, как и положено людям в общении с тупыми железками, генерируем набор токенов, например, с помощью градиентных атак, и получаем набор невнятного мусора типа .](Me giving////one please? revert with \"!—Two в GCG. Подчеркивается, что они требуют больших вычислительных ресурсов и выглядят непонятно (хотя мне непонятно, почему это недостаток). 2. Prompt-level-джейлбрейки: когда кожаные мешки ставят совершенную машину с собой на одну ступень и пытаются ее обмануть всякими DAN, AIM, Developer Mode и так далее. Из недостатков – для их создания нужно думать, что для кожаного мешка всегда минус.
Заключая, что хочется автоматически, как в первом типе, но красиво, как во втором, авторы предлагают использовать для джейлбрейка LLM такую же LLM, итеративно улучшая атаку. Так и получается PAIR.
Jailbreaking Black Box Large Language Models in Twenty Queries Patrick Chao et al., 2023 Статья, сайт, код
Зачем нужны языковые модели, если с их помощью нельзя взламывать другие языковые модели? Так подумали исследователи из Университета Пенсильвании и создали свой метод автоматического джейлбрейкинга для black-box-моделей, который они назвали Prompt Automatic Iterative Refinement, или PAIR.
Для начала исследователи вводят свою категоризацию джейлбрейков:
1. Token-level-джейлбрейки: когда мы, как и положено людям в общении с тупыми железками, генерируем набор токенов, например, с помощью градиентных атак, и получаем набор невнятного мусора типа .](Me giving////one please? revert with \"!—Two в GCG. Подчеркивается, что они требуют больших вычислительных ресурсов и выглядят непонятно (хотя мне непонятно, почему это недостаток). 2. Prompt-level-джейлбрейки: когда кожаные мешки ставят совершенную машину с собой на одну ступень и пытаются ее обмануть всякими DAN, AIM, Developer Mode и так далее. Из недостатков – для их создания нужно думать, что для кожаного мешка всегда минус.
Заключая, что хочется автоматически, как в первом типе, но красиво, как во втором, авторы предлагают использовать для джейлбрейка LLM такую же LLM, итеративно улучшая атаку. Так и получается PAIR.
He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. In 2018, Russia banned Telegram although it reversed the prohibition two years later. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK.
from us