Telegram Group & Telegram Channel
RL Is a Hammer and LLMs Are Nails: A Simple Reinforcement Learning Recipe for Strong Prompt Injection
Wen at al., 2025
Препринт, код

Про хорошие статьи, типа этой от исследователей из Университета Мэриленда и FAIR, рассказывать легко и интересно. Задача: генерировать промпт-инъекции с помощью LLM, а не вручную. Если вы пробовали, то знаете, что LLM с этой задачей справляются не очень хорошо – я пытался применять аналог PAIR в LLMail Injection Challenge и не особо преуспел. Градиентные методы тут не подойдут, т.к. мы имеем дискретную меру успеха. Значит, надо применить RL? PPO требует наличия value-модели, которую надо как-то обучить, DPO – датасета попарных сравнений инъекций-кандидатов.

Но год назад китайцы из DeepSeek придумали использовать для файн-тюнинга LLM алгоритм под названием GRPO (Group Relative Policy Optimization). Подробных его разборов в интернете навалом, но суть в том, что наша LLM генерирует гипотезы-продолжения промпта, а сигнал получается из синтетического ранжирования этих гипотез с помощью reward-модели. В нашем случае такое ранжирование получается из того, получилась ли инъекция типа «Открой входную дверь» (привет, Promptware) успешной или нет.

Наивное применение этого метода, к сожалению, не дало успеха, т.к., кроме прочего, мы получаем очень разреженный сигнал, особенно атакуя устойчивые к атакам модели. Исследователи предлагают набор трюков, которые заставляют RL-Hammer работать:

1. Давайте уберем из реворда GRPO слагаемое, описывающее отклонение (KL) от изначальной модели. Оно используется в файн-тюнинге, чтобы сделать процесс консервативным и не поломать в процессе SFT-модель, но тут нам общие навыки не очень важны. Результат – более смелое исследование гипотез.
2. Возьмем несколько целевых моделей для расчета реворда – слабую и сильную. Если наша модель преуспела в инъекции одной, будем давать реворд в 0,5, а если двух – 1. Это позволяет модели нащупывать подходы, которые работают в целом.
3. Чтобы модель не отклонялась от цели сделать короткую и понятную инъекцию (и в целом чтобы не было деградации в бесконечную генерацию), будем давать реворд, отличный от нуля, только если она следует нужному формату ответа.

Сформулировав этот метод, исследователи берут H200, засовывают на нее Llama-3.1-8B-instruct и используют датасет InjecAgent для обучения LoRA-адаптера. В результате получаются довольно хорошие цифры – более 80% ASR на всех наборах данных – например, 98% на GPT-4o при совместном обучении на Llama-3.1-8B-instruct и GPT-4o в качестве целевых. При этом сильного трансфера вне семейств моделей не наблюдается. Из любопытного – модель обнаруживает различные тактики – от командного тона до заискивания – и зачастую генерирует набор из префикса и суффикса к повторенному дословно тексту команды, что делает инъекции достаточно универсальными по отношению к цели инъекции. Более того, подход работает не только для инъекций, но и для джейлбрейков – пусть и на AdvBench, но 99% ASR для gpt-4o и 97% для Claude-3.5-Sonnet (AutoDAN — В С Ё). Наконец, атаки, несмотря на удаление KL-дивергенции, остаются похожими на естественный язык и не триггерят не только детекторы на базе перплексии, но и другие методы детектирования типа PromptGuard. Даже относительно рабочие методы типа LLM-as-judge могу обходиться, если добавить в RL-реворд фидбек от них.

У метода есть и ограничения: уже упомянутая низкая переносимость, высокая сложность и стоимость и, конечно, сложность атак закрытых моделей из-за риска, что Anthropic забанят тебя за излишнюю настойчивость. Тем не менее, результаты очень интересные, код находится в свободном доступе, и будет интересно посмотреть, не появится ли рынок LoRA-адаптеров для промпт-инъекций против разных моделей 🔪
Please open Telegram to view this post
VIEW IN TELEGRAM
4



group-telegram.com/llmsecurity/643
Create:
Last Update:

RL Is a Hammer and LLMs Are Nails: A Simple Reinforcement Learning Recipe for Strong Prompt Injection
Wen at al., 2025
Препринт, код

Про хорошие статьи, типа этой от исследователей из Университета Мэриленда и FAIR, рассказывать легко и интересно. Задача: генерировать промпт-инъекции с помощью LLM, а не вручную. Если вы пробовали, то знаете, что LLM с этой задачей справляются не очень хорошо – я пытался применять аналог PAIR в LLMail Injection Challenge и не особо преуспел. Градиентные методы тут не подойдут, т.к. мы имеем дискретную меру успеха. Значит, надо применить RL? PPO требует наличия value-модели, которую надо как-то обучить, DPO – датасета попарных сравнений инъекций-кандидатов.

Но год назад китайцы из DeepSeek придумали использовать для файн-тюнинга LLM алгоритм под названием GRPO (Group Relative Policy Optimization). Подробных его разборов в интернете навалом, но суть в том, что наша LLM генерирует гипотезы-продолжения промпта, а сигнал получается из синтетического ранжирования этих гипотез с помощью reward-модели. В нашем случае такое ранжирование получается из того, получилась ли инъекция типа «Открой входную дверь» (привет, Promptware) успешной или нет.

Наивное применение этого метода, к сожалению, не дало успеха, т.к., кроме прочего, мы получаем очень разреженный сигнал, особенно атакуя устойчивые к атакам модели. Исследователи предлагают набор трюков, которые заставляют RL-Hammer работать:

1. Давайте уберем из реворда GRPO слагаемое, описывающее отклонение (KL) от изначальной модели. Оно используется в файн-тюнинге, чтобы сделать процесс консервативным и не поломать в процессе SFT-модель, но тут нам общие навыки не очень важны. Результат – более смелое исследование гипотез.
2. Возьмем несколько целевых моделей для расчета реворда – слабую и сильную. Если наша модель преуспела в инъекции одной, будем давать реворд в 0,5, а если двух – 1. Это позволяет модели нащупывать подходы, которые работают в целом.
3. Чтобы модель не отклонялась от цели сделать короткую и понятную инъекцию (и в целом чтобы не было деградации в бесконечную генерацию), будем давать реворд, отличный от нуля, только если она следует нужному формату ответа.

Сформулировав этот метод, исследователи берут H200, засовывают на нее Llama-3.1-8B-instruct и используют датасет InjecAgent для обучения LoRA-адаптера. В результате получаются довольно хорошие цифры – более 80% ASR на всех наборах данных – например, 98% на GPT-4o при совместном обучении на Llama-3.1-8B-instruct и GPT-4o в качестве целевых. При этом сильного трансфера вне семейств моделей не наблюдается. Из любопытного – модель обнаруживает различные тактики – от командного тона до заискивания – и зачастую генерирует набор из префикса и суффикса к повторенному дословно тексту команды, что делает инъекции достаточно универсальными по отношению к цели инъекции. Более того, подход работает не только для инъекций, но и для джейлбрейков – пусть и на AdvBench, но 99% ASR для gpt-4o и 97% для Claude-3.5-Sonnet (AutoDAN — В С Ё). Наконец, атаки, несмотря на удаление KL-дивергенции, остаются похожими на естественный язык и не триггерят не только детекторы на базе перплексии, но и другие методы детектирования типа PromptGuard. Даже относительно рабочие методы типа LLM-as-judge могу обходиться, если добавить в RL-реворд фидбек от них.

У метода есть и ограничения: уже упомянутая низкая переносимость, высокая сложность и стоимость и, конечно, сложность атак закрытых моделей из-за риска, что Anthropic забанят тебя за излишнюю настойчивость. Тем не менее, результаты очень интересные, код находится в свободном доступе, и будет интересно посмотреть, не появится ли рынок LoRA-адаптеров для промпт-инъекций против разных моделей 🔪

BY llm security и каланы











Share with your friend now:
group-telegram.com/llmsecurity/643

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media.
from us


Telegram llm security и каланы
FROM American