Telegram Group & Telegram Channel
When Linear Attention Meets Autoregressive Decoding: Towards More Effective and Efficient Linearized Large Language Models

Довольно изящный механизм комбинирования ранее известных видов оптимизации скорости вычислений трансформера, которые были известны ранее

Сейчас я говорю о:

🩰Speculative Sampling (link): идея в распаралелливании авторегрессионой задачи через использовании одной легковестной модели (черновой) и более крупной и "умной" (целевой). В то время, как малютка черновая генерирует некоторое количество токенок, целевая проходится параллельно по выборке и оценивает качество, проверяя, насколько эти токены соответствуют её распределению

🩰Linear Attentions, LAs (link): в attention есть дорогостоящая операция измерения сходства каждого токена с каждым через softmax. Мы можем заменить функцию на более дешевую операцию через ядерное встраивание.

По сути меняем softmax(Q*K^T) на f(Q) * f(K), преобразованные через ядерную функцию, которая “проецирует” их в новое пространство. Таким образом, схожесть между запросами и ключами вычисляется не в исходном пространстве, а в этом новом пространстве признаков. (я хз как в тг это написать красивее, прошу понять и простить)

🩰Grouped Linear Attention: когда мы разделяем входную последовательность на независимые группы токенов. В пределах каждой группы локальные зависимости могут обрабатываться параллельно, что значительно ускоряет вычисления. Уже нечто схожее упоминалось в стаье Grouped-Query Attention (GQA). Идея разбиения информации для эффективной обработки длинных последовательностей также модифицировано прослеживает в Linformer (link), Longformer (link) и LongNet (tg link)

🏃‍♂️В общем то в первой части исходной статьи авторы замеряют на работает LAs на разных архитектурах (encoder-only, decoder-only, encoder-decoder). Сюрприх-сюрприз: приходят к выводам, что:

💛Linear Attention значительно ускоряет обучение, но показывает себя не настолько эффективно на инференсе авторегрессионной задачи
💛Линейное внимание приводит к уменьшению latency до 56% и снижению потребления памяти до 37%
💛Линейное внимание плохо учитывает последовательные временные зависимости токенов. Это приводит к “утечке информации” (information leakage), когда модель может случайно получить доступ к будущим токенам

👍Эти выводы они использует, как аргумент к комбинации многих из выше описанных подходов и добавления своих механизмов для борьбы с information leakage:

🩰Augmentation: Предлагают маскированную глубинную свёртку (masked DWConv) как способ улучшить линейное внимание, обеспечив, чтобы каждый токен мог учитывать только предыдущие токены, сохраняя причинно-следственные связи
🩰Используют Grouped Linear Attention. Для каждой группы вычисляются суммы произведений ключей и значений (KV cumsum), что позволяет минимизировать вычислительные зависимости между группами и повысить эффективность
🩰Как все уже могли догадаться, используют Speculative Sampling, чтобы повысить эффективность Linear Attention при инференсе
🩰 Unfolded: В Speculative Sampling, для корректной работы с несколькими кандидатами токенов одновременно, они предлагают “разворачивать” свёртки по времени с помощью техники, похожей на img2col, используемую в cv. Это позволяет свёрткам корректно учитывать временные зависимости

📖Статья
🖥Код
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍73



group-telegram.com/nadlskom/472
Create:
Last Update:

When Linear Attention Meets Autoregressive Decoding: Towards More Effective and Efficient Linearized Large Language Models

Довольно изящный механизм комбинирования ранее известных видов оптимизации скорости вычислений трансформера, которые были известны ранее

Сейчас я говорю о:

🩰Speculative Sampling (link): идея в распаралелливании авторегрессионой задачи через использовании одной легковестной модели (черновой) и более крупной и "умной" (целевой). В то время, как малютка черновая генерирует некоторое количество токенок, целевая проходится параллельно по выборке и оценивает качество, проверяя, насколько эти токены соответствуют её распределению

🩰Linear Attentions, LAs (link): в attention есть дорогостоящая операция измерения сходства каждого токена с каждым через softmax. Мы можем заменить функцию на более дешевую операцию через ядерное встраивание.

По сути меняем softmax(Q*K^T) на f(Q) * f(K), преобразованные через ядерную функцию, которая “проецирует” их в новое пространство. Таким образом, схожесть между запросами и ключами вычисляется не в исходном пространстве, а в этом новом пространстве признаков. (я хз как в тг это написать красивее, прошу понять и простить)

🩰Grouped Linear Attention: когда мы разделяем входную последовательность на независимые группы токенов. В пределах каждой группы локальные зависимости могут обрабатываться параллельно, что значительно ускоряет вычисления. Уже нечто схожее упоминалось в стаье Grouped-Query Attention (GQA). Идея разбиения информации для эффективной обработки длинных последовательностей также модифицировано прослеживает в Linformer (link), Longformer (link) и LongNet (tg link)

🏃‍♂️В общем то в первой части исходной статьи авторы замеряют на работает LAs на разных архитектурах (encoder-only, decoder-only, encoder-decoder). Сюрприх-сюрприз: приходят к выводам, что:

💛Linear Attention значительно ускоряет обучение, но показывает себя не настолько эффективно на инференсе авторегрессионной задачи
💛Линейное внимание приводит к уменьшению latency до 56% и снижению потребления памяти до 37%
💛Линейное внимание плохо учитывает последовательные временные зависимости токенов. Это приводит к “утечке информации” (information leakage), когда модель может случайно получить доступ к будущим токенам

👍Эти выводы они использует, как аргумент к комбинации многих из выше описанных подходов и добавления своих механизмов для борьбы с information leakage:

🩰Augmentation: Предлагают маскированную глубинную свёртку (masked DWConv) как способ улучшить линейное внимание, обеспечив, чтобы каждый токен мог учитывать только предыдущие токены, сохраняя причинно-следственные связи
🩰Используют Grouped Linear Attention. Для каждой группы вычисляются суммы произведений ключей и значений (KV cumsum), что позволяет минимизировать вычислительные зависимости между группами и повысить эффективность
🩰Как все уже могли догадаться, используют Speculative Sampling, чтобы повысить эффективность Linear Attention при инференсе
🩰 Unfolded: В Speculative Sampling, для корректной работы с несколькими кандидатами токенов одновременно, они предлагают “разворачивать” свёртки по времени с помощью техники, похожей на img2col, используемую в cv. Это позволяет свёрткам корректно учитывать временные зависимости

📖Статья
🖥Код

BY что-то на DL-ском







Share with your friend now:
group-telegram.com/nadlskom/472

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981.
from us


Telegram что-то на DL-ском
FROM American