Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/nlpwanderer/-85-86-87-88-89-90-91-): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
NLP Wanderer | Telegram Webview: nlpwanderer/85 -
Telegram Group & Telegram Channel
Forwarded from rizzearch
Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models

помимо дипсика и квена, недавно успели еще китайцы выкатить очередную ллм - минимакс, уже по традиции которая является МоЕ + вводит гибрид софтмакс и линейного аттеншнов (кстати о махинациях с аттеншном мы уже ни раз писали)

при том второй аттеншн не абы какой, а лайтнинг (не тот слава Богу). в минимаксе используется первая версия, а почти одновременно с этой моделькой успела выйти и вторая версия

в чем вообще суть - вот у нас есть

softmax(Q @ K^T) @ V, где иннер продукт между запросами и ключами выдает матрицу seq_len x seq_len, что довольно много

→ приходит в голову идея линеаризовать аттеншн, то есть делаем просто из softmax(Q @ K^T) ~= phi(Q) @ phi(K^T) ⇒ [phi(Q) @ phi(K^T)] @ V, что можно переписать как из left product в right product

phi(Q) @ [ phi(K^T) @ V ], где не будем напрямую высчитывать seq_len x seq_len матрицу, а будет только hidden_dim x hidden_dim. profit?

не совсем, когда в дело приходит понятие каузальности, ибо тогда формула становится (phi убрал для удобства) снова left product

[Q @ K^T * causal_mask] @ V

снова получаем seq_len x seq_len момент, это дело можно исправить алгоритмом Linear Attention Right Product (на предпоследней фотке), но тогда встревает кумулятивная сумма, которую не распараллелить

ну и авторы довольно красивое решение предлагают в виде того, что как раз и называется Lightning Attention

- во-первых, го вычислять аттеншн по блокам, по которым и будет идти цикл как обычно
- а в каждом блоке будем одновременно вычислять аттеншны и первым, и вторым способом: через left product с каузальной маской будет вычисляться intra block (как я понял потому что он находится рядом с диагональными элементами как раз, где и нужна каузальная маска), а через right product inter block (который/которые не соприкасаются с диагональю и можно без каузальной маски их использовать, да еще и этот блок вычислить можно через накопленную кумулятивную сумму KV), а в конце просто просуммируем, не забыв обновить KV
- тут получаем трейдофф между лево- и правоматричным умножениями, который еще и к тому же нетяжело под хардвейр оптимизировать - перетаскивать поочередно блоки между High Bandwidth Memory & SRAM (последняя картинка для иллюстрации отсюда, по всем правилам - чем больше по памяти вмещается, тем медленее работает)

вторая же версия отличается тем, что в каузальную маску добавляется гипер, контролирующий меру затухания информации между токенами (похожее делали в ретнете и второй мамбе), по формулам конечно присутствует не только в маске для сохранения контистенси в реккурентных выражениях (хоть этот вариант алгоритма был и в первой версии в аппендиксе)

реализовано все на тритоне, метод в принципе применим не только к их ТрансНормеру

👀 link, code



group-telegram.com/nlpwanderer/85
Create:
Last Update:

Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models

помимо дипсика и квена, недавно успели еще китайцы выкатить очередную ллм - минимакс, уже по традиции которая является МоЕ + вводит гибрид софтмакс и линейного аттеншнов (кстати о махинациях с аттеншном мы уже ни раз писали)

при том второй аттеншн не абы какой, а лайтнинг (не тот слава Богу). в минимаксе используется первая версия, а почти одновременно с этой моделькой успела выйти и вторая версия

в чем вообще суть - вот у нас есть

softmax(Q @ K^T) @ V, где иннер продукт между запросами и ключами выдает матрицу seq_len x seq_len, что довольно много

→ приходит в голову идея линеаризовать аттеншн, то есть делаем просто из softmax(Q @ K^T) ~= phi(Q) @ phi(K^T) ⇒ [phi(Q) @ phi(K^T)] @ V, что можно переписать как из left product в right product

phi(Q) @ [ phi(K^T) @ V ], где не будем напрямую высчитывать seq_len x seq_len матрицу, а будет только hidden_dim x hidden_dim. profit?

не совсем, когда в дело приходит понятие каузальности, ибо тогда формула становится (phi убрал для удобства) снова left product

[Q @ K^T * causal_mask] @ V

снова получаем seq_len x seq_len момент, это дело можно исправить алгоритмом Linear Attention Right Product (на предпоследней фотке), но тогда встревает кумулятивная сумма, которую не распараллелить

ну и авторы довольно красивое решение предлагают в виде того, что как раз и называется Lightning Attention

- во-первых, го вычислять аттеншн по блокам, по которым и будет идти цикл как обычно
- а в каждом блоке будем одновременно вычислять аттеншны и первым, и вторым способом: через left product с каузальной маской будет вычисляться intra block (как я понял потому что он находится рядом с диагональными элементами как раз, где и нужна каузальная маска), а через right product inter block (который/которые не соприкасаются с диагональю и можно без каузальной маски их использовать, да еще и этот блок вычислить можно через накопленную кумулятивную сумму KV), а в конце просто просуммируем, не забыв обновить KV
- тут получаем трейдофф между лево- и правоматричным умножениями, который еще и к тому же нетяжело под хардвейр оптимизировать - перетаскивать поочередно блоки между High Bandwidth Memory & SRAM (последняя картинка для иллюстрации отсюда, по всем правилам - чем больше по памяти вмещается, тем медленее работает)

вторая же версия отличается тем, что в каузальную маску добавляется гипер, контролирующий меру затухания информации между токенами (похожее делали в ретнете и второй мамбе), по формулам конечно присутствует не только в маске для сохранения контистенси в реккурентных выражениях (хоть этот вариант алгоритма был и в первой версии в аппендиксе)

реализовано все на тритоне, метод в принципе применим не только к их ТрансНормеру

👀 link, code

BY NLP Wanderer










Share with your friend now:
group-telegram.com/nlpwanderer/85

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram.
from us


Telegram NLP Wanderer
FROM American