Telegram Group & Telegram Channel
Physics of Language Models

Я в своей жизни ML занимался довольно мало, но в последнее время решил все-таки по-лучше разобраться. Так что иногда (частота зависит от количества лайков 👍) буду постить краткие пересказы статей/докладов, которые мне показались интересными.

Мне очень не нравится идея смотреть на LLM, как на какой-то черный ящик, который каким-то магическим образом учится, и, нужно всего лишь увеличить количество параметров в нем, обучить на большем количестве данных, и тогда он станет гораздо умнее и вдруг научится решать всякие задачи.

В докладе Physics of language models авторы тренируют относительно маленькие модели (100М параметров) на синтетических данных, и смотрят, какие задачи LLM могут решать, а какие нет.

Например, оказывается что LLM даже теоретически не могут научиться отвечать на вопрос вида "Правда ли, что Байден родился в четном году?" при том, что они прекрасно знают в каком году он родился, и знают, какие числа четные. Оказывается, что дело в порядке токенов. Если бы ответ был в формате "Байден родился в году 1942, это четное число, ответ да", то все бы работало. Но если хочется получить ответ в формате "Да, потому что он родился в ...", то в момент написания первого токена у LLM еще не будет числа 1942 "в контексте" и она не сможет выбрать правильный ответ. И такая проблема есть у любых моделей вне зависимости от размера.

По аналогичным соображениям, если в датасете было написано только "X родился в городе Y", то модель никогда не сможет научиться правильно отвечать на обратный вопрос "кто родился в городе Y?" (потому что в "памяти" модели будет мапинг X->Y, но не в обратную сторону).

Еще из прикольного в докладе показывают, что можно обучить текстовую модель делать топологическую сортировку графа. При этом можно проследить, что в "состоянии" модели во время инференса действительно будет храниться множество посещенных вершин и тех вершин, которые можно посетить на следующем шагу.



group-telegram.com/optorepost/85
Create:
Last Update:

Physics of Language Models

Я в своей жизни ML занимался довольно мало, но в последнее время решил все-таки по-лучше разобраться. Так что иногда (частота зависит от количества лайков 👍) буду постить краткие пересказы статей/докладов, которые мне показались интересными.

Мне очень не нравится идея смотреть на LLM, как на какой-то черный ящик, который каким-то магическим образом учится, и, нужно всего лишь увеличить количество параметров в нем, обучить на большем количестве данных, и тогда он станет гораздо умнее и вдруг научится решать всякие задачи.

В докладе Physics of language models авторы тренируют относительно маленькие модели (100М параметров) на синтетических данных, и смотрят, какие задачи LLM могут решать, а какие нет.

Например, оказывается что LLM даже теоретически не могут научиться отвечать на вопрос вида "Правда ли, что Байден родился в четном году?" при том, что они прекрасно знают в каком году он родился, и знают, какие числа четные. Оказывается, что дело в порядке токенов. Если бы ответ был в формате "Байден родился в году 1942, это четное число, ответ да", то все бы работало. Но если хочется получить ответ в формате "Да, потому что он родился в ...", то в момент написания первого токена у LLM еще не будет числа 1942 "в контексте" и она не сможет выбрать правильный ответ. И такая проблема есть у любых моделей вне зависимости от размера.

По аналогичным соображениям, если в датасете было написано только "X родился в городе Y", то модель никогда не сможет научиться правильно отвечать на обратный вопрос "кто родился в городе Y?" (потому что в "памяти" модели будет мапинг X->Y, но не в обратную сторону).

Еще из прикольного в докладе показывают, что можно обучить текстовую модель делать топологическую сортировку графа. При этом можно проследить, что в "состоянии" модели во время инференса действительно будет храниться множество посещенных вершин и тех вершин, которые можно посетить на следующем шагу.

BY optorepost


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/optorepost/85

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals.
from us


Telegram optorepost
FROM American