Telegram Group & Telegram Channel
❤️ Эксперты в Telegram: тематический анализ, лексическая сложность и тональность

«Полилог. Экспертиза» продолжает серию мини-исследований, посвящённых телеграм-каналам публичных экспертов. Ранее мы расположили каналы на политических координатах при помощи ChatGPT 4o и провели количественное исследование, посчитав аудиторию, средние просмотры, репосты и объём контента авторов. На этот раз с помощью методов ML и NLP мы оценили темы, тональность и лексическую сложность публикаций.

Методология

Из 40 каналов публичных экспертов мы спарсили публикации за 3 года (июнь 2022 — июнь 2025) и для повышения качества моделей отфильтровали тексты в 100 и более слов (51 тысяча*). Репосты были исключены — при подсчетах рассматривались только посты, написанные от лица канала. Основные результаты представлены на карточках, подробную информацию по каждому из каналов можно найти в общей таблице (бонус — средняя токсичность постов).

🎯 Форматы и эмодзи. Эксперты предпочитают текстовые сообщения и публикации с фото. Видео-контент занимает менее 10%, а голосовые сообщения и кружки — менее 0,1%. Эмодзи, как правило, используются для оформления контента — лидерами по частоте их использования стали «Полилог. Экспертиза» и Михаил Фаленков.

🎯 Сложность. Средняя сложность коммуникации оценивалась по адаптированному для русского языка индексу туманности Ганнинга. Значение индекса можно интерпретировать как количество лет обучения, которые необходимы для понимания текста. Важный момент: оцениваются лексика и синтаксис, но не поднимаемые темы. Навык донесения сложной информации простым языком лучше всего развит у Сергея Маркова — тексты на его канале могут понять даже шестиклассники.

🎯 Тональность. Для оценки тональности мы воспользовались моделью RuBERT-tiny2, дообученной для классификации коротких русскоязычных текстов: «позитивные», «негативные» и «нейтральные». Средняя «эмоциональность» рассчитывалась как сумма долей «позитивных» и «негативных» текстов. Лидером позитивной коммуникации стала Дарья Кислицына (49% публикаций), негативной — Сергей Марков (49%). Наиболее нейтральный стиль — у Романа Моложона (79%) и Павла Склянчука (77%).

🎯 Темы. Для оценки тематики публикаций мы разбили выборку на три части (по ключевым словам) и обучили LDA-модели с 20 скрытыми темами. Каждая из 60 скрытых тем интерпретировалась вручную, пополняя две категории: «Теория, история, исследования» и «Актуальная повестка». Лидерами в первой категории стали Political Animals (65% публикаций) и Павел Пряников (44%). Наиболее актуальный контент публикует Максим Жаров (98,3% текстов).

🎯 Кластерный анализ. Категория «Актуальная повестка» включает шесть направлений, представленных на тематическом гексагоне. Мы воспользовались методом k-средних и выделили пять групп экспертов. Авторы из Кластера I пишут о выборах и внутренней политике в зарубежных странах. Кластер II фокусируется на партийной повестке в России. Кластер III — на внутренней политике в РФ. Кластер V — на геополитике и украинском конфликте. А эксперты из Кластера IV в равной мере обращаются ко всем темам.

Кластер I: Ян Веселов, Павел Дубравский, Мирильяс Агаев.

Кластер II: Михаил Фаленков, «Процедуры и ритуалы», Павел Склянчук, Татьяна Косачёва, Андрей Цепелев, Роман Моложон.

Кластер III: «Трезвый политолог», Александр Семёнов, Дмитрий Еловский, Сергей Старовойтов, Станислав Корякин, Илья Гращенков, Наталия Елисеева, Мария Сергеева, Никита Сетов, Анна Федорова, Дарья Кислицына, Макар Вихлянцев, Алексей Чадаев, Павел Пряников.

Кластер IV: «Полилог. Экспертиза», Евгений Минченко, Глеб Кузнецов, Анна Богачёва, Ярослав Игнатовский, Михаил Виноградов, Валерий Прохоров, Political Animals, Марат Баширов, Алексей Ярошенко, Михаил Карягин.

Кластер V: Алексей Мартынов, Алексей Чеснаков, Павел Данилин, Игорь Димитриев, Максим Жаров, Сергей Марков.

*Для оценки форматов публикаций, эмодзи и сложности текстов использовалась полная выборка за 1 год (44 тысячи текстов).

Полилог. Экспертиза | Наши слоны
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/polylog_expertise/3276
Create:
Last Update:

❤️ Эксперты в Telegram: тематический анализ, лексическая сложность и тональность

«Полилог. Экспертиза» продолжает серию мини-исследований, посвящённых телеграм-каналам публичных экспертов. Ранее мы расположили каналы на политических координатах при помощи ChatGPT 4o и провели количественное исследование, посчитав аудиторию, средние просмотры, репосты и объём контента авторов. На этот раз с помощью методов ML и NLP мы оценили темы, тональность и лексическую сложность публикаций.

Методология

Из 40 каналов публичных экспертов мы спарсили публикации за 3 года (июнь 2022 — июнь 2025) и для повышения качества моделей отфильтровали тексты в 100 и более слов (51 тысяча*). Репосты были исключены — при подсчетах рассматривались только посты, написанные от лица канала. Основные результаты представлены на карточках, подробную информацию по каждому из каналов можно найти в общей таблице (бонус — средняя токсичность постов).

🎯 Форматы и эмодзи. Эксперты предпочитают текстовые сообщения и публикации с фото. Видео-контент занимает менее 10%, а голосовые сообщения и кружки — менее 0,1%. Эмодзи, как правило, используются для оформления контента — лидерами по частоте их использования стали «Полилог. Экспертиза» и Михаил Фаленков.

🎯 Сложность. Средняя сложность коммуникации оценивалась по адаптированному для русского языка индексу туманности Ганнинга. Значение индекса можно интерпретировать как количество лет обучения, которые необходимы для понимания текста. Важный момент: оцениваются лексика и синтаксис, но не поднимаемые темы. Навык донесения сложной информации простым языком лучше всего развит у Сергея Маркова — тексты на его канале могут понять даже шестиклассники.

🎯 Тональность. Для оценки тональности мы воспользовались моделью RuBERT-tiny2, дообученной для классификации коротких русскоязычных текстов: «позитивные», «негативные» и «нейтральные». Средняя «эмоциональность» рассчитывалась как сумма долей «позитивных» и «негативных» текстов. Лидером позитивной коммуникации стала Дарья Кислицына (49% публикаций), негативной — Сергей Марков (49%). Наиболее нейтральный стиль — у Романа Моложона (79%) и Павла Склянчука (77%).

🎯 Темы. Для оценки тематики публикаций мы разбили выборку на три части (по ключевым словам) и обучили LDA-модели с 20 скрытыми темами. Каждая из 60 скрытых тем интерпретировалась вручную, пополняя две категории: «Теория, история, исследования» и «Актуальная повестка». Лидерами в первой категории стали Political Animals (65% публикаций) и Павел Пряников (44%). Наиболее актуальный контент публикует Максим Жаров (98,3% текстов).

🎯 Кластерный анализ. Категория «Актуальная повестка» включает шесть направлений, представленных на тематическом гексагоне. Мы воспользовались методом k-средних и выделили пять групп экспертов. Авторы из Кластера I пишут о выборах и внутренней политике в зарубежных странах. Кластер II фокусируется на партийной повестке в России. Кластер III — на внутренней политике в РФ. Кластер V — на геополитике и украинском конфликте. А эксперты из Кластера IV в равной мере обращаются ко всем темам.

Кластер I: Ян Веселов, Павел Дубравский, Мирильяс Агаев.

Кластер II: Михаил Фаленков, «Процедуры и ритуалы», Павел Склянчук, Татьяна Косачёва, Андрей Цепелев, Роман Моложон.

Кластер III: «Трезвый политолог», Александр Семёнов, Дмитрий Еловский, Сергей Старовойтов, Станислав Корякин, Илья Гращенков, Наталия Елисеева, Мария Сергеева, Никита Сетов, Анна Федорова, Дарья Кислицына, Макар Вихлянцев, Алексей Чадаев, Павел Пряников.

Кластер IV: «Полилог. Экспертиза», Евгений Минченко, Глеб Кузнецов, Анна Богачёва, Ярослав Игнатовский, Михаил Виноградов, Валерий Прохоров, Political Animals, Марат Баширов, Алексей Ярошенко, Михаил Карягин.

Кластер V: Алексей Мартынов, Алексей Чеснаков, Павел Данилин, Игорь Димитриев, Максим Жаров, Сергей Марков.

*Для оценки форматов публикаций, эмодзи и сложности текстов использовалась полная выборка за 1 год (44 тысячи текстов).

Полилог. Экспертиза | Наши слоны

BY Полилог. Экспертиза









Share with your friend now:
group-telegram.com/polylog_expertise/3276

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. False news often spreads via public groups, or chats, with potentially fatal effects.
from us


Telegram Полилог. Экспертиза
FROM American