Telegram Group & Telegram Channel
Запрети мне псевдолейблить
Про что был NeurIPS Competition track в этом году? Соревнование было посвящено определению состава атмосферы экзопланет в космосе. Экзопланеты- это любые планеты, которые вращаются вокруг звезд вне солнечной системы. Теоретически, развитие методов их анализа…
🚀 Разбираем решение, которое принесло нашей команде 6-е место в Kaggle-соревновании по обработке данных миссии Ariel

Пост про то, что это вообще за сорева вот тут.

Мы работали с частотными сигналами, которые изначально были очень шумными. Для их сглаживания использовали:
1️⃣
Гауссовский регрессор
2️⃣
Фильтр Савицкого-Голея

Далее ищем границы транзитной зоны планеты. Делаем через простой эмпирический детектор: транзит на графике светимости звезды имеет вид \_/ — яркость падает, когда планета проходит перед звездой, так как часть частотных компонентов теряет интенсивность.

📉 Что мы делали дальше:
Удаляем этапы до и после транзита, чтобы анализировать только изменения светимости в нужный момент.
"Поднимаем" транзит обратно к уровню светимости звезды, чтобы восстановить исходный "пульс звезды". Это важно, чтобы учесть глобальное поведение светимости звезды, которе не очень-то и постоянное.

🔍 Фичи и модели:

На основе изменений яркости между ожидаемыми и наблюдаемыми значениями на заданных частотах извлекали фичи. Эти частоты совпадают с важными таргетами — спектрограммой атмосферы экзопланеты.
Обучаем линейную регрессию глобально для каждого таргета, подбирая оптимальные коэффициенты. В смысле берем все моменты времени для всех транзитов и конкретной частоты и ищем коэффициент подгонки.

Параллельно обучаем CNN, которая анализировала частотные изменения в заданных временных окнах.
Это:
Помогает учитывало локальные особенности спектра и переходов (энергии?) между частотами
Позволяло понять взаимосвязи между соседними частотами, улучшая точность предсказаний.
🔗 Финал:


Смешали (блендили) результаты линейной регрессии и CNN. Затем финальную спектрограмму еще раз сгладили, чтобы убрать артефакты.

💡 Бонус материал: пример 'подъема' спектра на картинке
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥232👍2😱2



group-telegram.com/pseudolabeling/216
Create:
Last Update:

🚀 Разбираем решение, которое принесло нашей команде 6-е место в Kaggle-соревновании по обработке данных миссии Ariel

Пост про то, что это вообще за сорева вот тут.

Мы работали с частотными сигналами, которые изначально были очень шумными. Для их сглаживания использовали:
1️⃣
Гауссовский регрессор
2️⃣
Фильтр Савицкого-Голея

Далее ищем границы транзитной зоны планеты. Делаем через простой эмпирический детектор: транзит на графике светимости звезды имеет вид \_/ — яркость падает, когда планета проходит перед звездой, так как часть частотных компонентов теряет интенсивность.

📉 Что мы делали дальше:
Удаляем этапы до и после транзита, чтобы анализировать только изменения светимости в нужный момент.
"Поднимаем" транзит обратно к уровню светимости звезды, чтобы восстановить исходный "пульс звезды". Это важно, чтобы учесть глобальное поведение светимости звезды, которе не очень-то и постоянное.

🔍 Фичи и модели:

На основе изменений яркости между ожидаемыми и наблюдаемыми значениями на заданных частотах извлекали фичи. Эти частоты совпадают с важными таргетами — спектрограммой атмосферы экзопланеты.
Обучаем линейную регрессию глобально для каждого таргета, подбирая оптимальные коэффициенты. В смысле берем все моменты времени для всех транзитов и конкретной частоты и ищем коэффициент подгонки.

Параллельно обучаем CNN, которая анализировала частотные изменения в заданных временных окнах.
Это:
Помогает учитывало локальные особенности спектра и переходов (энергии?) между частотами
Позволяло понять взаимосвязи между соседними частотами, улучшая точность предсказаний.
🔗 Финал:


Смешали (блендили) результаты линейной регрессии и CNN. Затем финальную спектрограмму еще раз сгладили, чтобы убрать артефакты.

💡 Бонус материал: пример 'подъема' спектра на картинке

BY Запрети мне псевдолейблить





Share with your friend now:
group-telegram.com/pseudolabeling/216

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. READ MORE As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site.
from us


Telegram Запрети мне псевдолейблить
FROM American