Telegram Group & Telegram Channel
SVGDreamer: Text Guided SVG Generation with Diffusion Model

⚡️ В этом году на CVPR была представлена статья SVGDreamer, посвященная text-to-svg генерации. Предложенная модель обладает более высоким визуальным качеством и разнородностью генерации, а благодаря разделению на семантические слои сгенерированные изображения легко редактировать.

Что внутри:

💠 Semantic-driven Image Vectorization (SIVE) разделяет семантические слои на изображении, что позволяет отдельно векторизовать объекты и фон картинки. Такое разделение необходимо, чтобы передний план и фон не были связаны друг с другом, и каждый объект на картинке мог легко редактироваться независимо от остальных. Контрольные точки кривых, задающих объекты в векторной графике, инициализируются на основе cross-attention map, после чего оптимизируются с помощью SIVE-лосса.

💠 Vectorized Particle-based Score Distillation (VPSD) для синтеза изображения. Авторы моделируют SVG-изображение распределением контрольных точек и их цветовых значений. Растеризованная с помощью дифференцируемого растеризатора diffvg картинка вместе с текстовым промптом подается на вход в предобученную text-to-image диффузионную модель и дообучаемую LoRA.

💠 Также авторы используют предобученную reward-модель, выставляющую скоры сэмплам из LoRA, и дополнительно считают reward-лосс.

🖼️ Для генерации доступны различные стили изображения, такие как скетч, пиксель-арт и рисунок. По метрикам модель обходит существующие решения, такие как DiffSketcher и VectorFusion.

🎉 В открытый доступ выложен код SVGDreamer, который (мы проверили) запускается из коробки.

💻 GitHub
📜 ArXiv
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥11👍95



group-telegram.com/rndcv_team/134
Create:
Last Update:

SVGDreamer: Text Guided SVG Generation with Diffusion Model

⚡️ В этом году на CVPR была представлена статья SVGDreamer, посвященная text-to-svg генерации. Предложенная модель обладает более высоким визуальным качеством и разнородностью генерации, а благодаря разделению на семантические слои сгенерированные изображения легко редактировать.

Что внутри:

💠 Semantic-driven Image Vectorization (SIVE) разделяет семантические слои на изображении, что позволяет отдельно векторизовать объекты и фон картинки. Такое разделение необходимо, чтобы передний план и фон не были связаны друг с другом, и каждый объект на картинке мог легко редактироваться независимо от остальных. Контрольные точки кривых, задающих объекты в векторной графике, инициализируются на основе cross-attention map, после чего оптимизируются с помощью SIVE-лосса.

💠 Vectorized Particle-based Score Distillation (VPSD) для синтеза изображения. Авторы моделируют SVG-изображение распределением контрольных точек и их цветовых значений. Растеризованная с помощью дифференцируемого растеризатора diffvg картинка вместе с текстовым промптом подается на вход в предобученную text-to-image диффузионную модель и дообучаемую LoRA.

💠 Также авторы используют предобученную reward-модель, выставляющую скоры сэмплам из LoRA, и дополнительно считают reward-лосс.

🖼️ Для генерации доступны различные стили изображения, такие как скетч, пиксель-арт и рисунок. По метрикам модель обходит существующие решения, такие как DiffSketcher и VectorFusion.

🎉 В открытый доступ выложен код SVGDreamer, который (мы проверили) запускается из коробки.

💻 GitHub
📜 ArXiv

BY RnD CV Team





Share with your friend now:
group-telegram.com/rndcv_team/134

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from us


Telegram RnD CV Team
FROM American