Telegram Group & Telegram Channel
На HF довольно давно появился пост, который я как-то пропустил, но который хорошо и кратко описывает основные оптимизации при обучении языковых моделей. Пост: ссылка
Есть ещё старый пост на ту же тему от Eleuther: ссылка
А пост ниже — это короткая выжимка от меня, именно по экономии памяти на одной карточке.

🔹Числа с плавающей точкой (IEEE 754) — основной тип для вычислений в языковых моделях, у них есть знак, экспонента и мантисса. Экспонента контролирует диапазон значений, мантисса — точность в рамках этого диапазона. Также напомню, что есть приколы с представлением чисел около нуля (aka денормализованные числа). Есть куча реализаций разной битности:
float: 32 бита, E8M23
tf32: 19 бит, E8M10 (специфичный для Nvidia формат, отсюда все странности)
fp16: 16 бит, E5M10
bf16: 16 бит, E8M7 (экспонента и диапазон как у float)
fp8: 8 бит, E4M3 или E5M2

🔹На что тратится память:
W: Сами веса модели
A: Активации (промежуточные состояния, результат вычисления функции от входа и весов)
G: Градиенты (обновления весов модели при обучении)
O: Состояние оптимизатора (моменты и дисперсия)

При инференсе есть только W и часть A, при обучении есть все 4 категории. Далее у каждого метода стоят буквы, которые обозначают, что именно экономится.

🔹Методы экономии памяти при инференсе:
— Квантование модели (WA): ужимаем тип данных для весов и активаций. В большинстве статьей так и написано: W4A16, что означает, что веса в 4 битах, активации в 16 битах.
— Flash Attention (A): оптимизируем вычисление внимания поблочными вычислениями в кэше GPU, попутно уменьшая сложность по памяти с квадратичной по длине последовательности до линейной.

🔹Дополнительные методы экономии памяти при обучении на одной карточке:
— Смешанная точность (A): имеем рабочую копию в 16 битах (bf16 или fp16), а также мастер-копию в 32 битах. Все операции делаем с рабочей копией и потом обновления весов вливаем в мастер-копию. Вы спросите: а где профит? А профит в том, что активации в 16 битах, а активации — это дофига памяти.
— Квантование оптимизатора (O): ужимаем тип данных для состояний оптимизатора. Чаще всего в 8 бит, перед собственно применением градиентов расквантовываем.
— Аккумуляция градиентов (AG): если мы хотим батч из больше чем одного примера, то A и G тоже раздуются. Но нам совсем не обязательно считать градиенты параллельно, поэтому мы можем считать их последовательно, суммировать, и только потом применять. Если это правильно😁 отмасштабировать, то это теоретически эквивалентно обучению на всём батче.
— Чекпоинты активаций (A): при обучении нам по-хорошему нужны активации на всех слоях, чтобы потом считать по ним градиенты. Но нам сначала нужно дойти до лосса, поэтому мы выкидываем часть промежуточных активаций и пересчитываем их заново на основе оставшихся чекпоинтов тогда, когда они нам реально понадобятся для подсчёта градиентов.
— Адаптеры (GO): основную модель вообще не трогаем, учим только новый маленький набор весов. Градиенты считаем только по нему, и на этом сильно экономим.

На практике используется буквально всё, везде и сразу 🤯
Типичный конфиг:
"model": {
"attn_implementation": "flash_attention_2", // вы поняли
"load_in_4bit": true, // квантование модели
...
},
"trainer": {
"gradient_accumulation_steps": 32, // аккумуляция градиентов
"bf16": true, // смешанная точность
"optim": "adamw_8bit", // квантование оптимизатора
"gradient_checkpointing": true, // чекпоинты активаций
...
},
"lora": {...} // адаптеры
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/senior_augur/348
Create:
Last Update:

На HF довольно давно появился пост, который я как-то пропустил, но который хорошо и кратко описывает основные оптимизации при обучении языковых моделей. Пост: ссылка
Есть ещё старый пост на ту же тему от Eleuther: ссылка
А пост ниже — это короткая выжимка от меня, именно по экономии памяти на одной карточке.

🔹Числа с плавающей точкой (IEEE 754) — основной тип для вычислений в языковых моделях, у них есть знак, экспонента и мантисса. Экспонента контролирует диапазон значений, мантисса — точность в рамках этого диапазона. Также напомню, что есть приколы с представлением чисел около нуля (aka денормализованные числа). Есть куча реализаций разной битности:
float: 32 бита, E8M23
tf32: 19 бит, E8M10 (специфичный для Nvidia формат, отсюда все странности)
fp16: 16 бит, E5M10
bf16: 16 бит, E8M7 (экспонента и диапазон как у float)
fp8: 8 бит, E4M3 или E5M2

🔹На что тратится память:
W: Сами веса модели
A: Активации (промежуточные состояния, результат вычисления функции от входа и весов)
G: Градиенты (обновления весов модели при обучении)
O: Состояние оптимизатора (моменты и дисперсия)

При инференсе есть только W и часть A, при обучении есть все 4 категории. Далее у каждого метода стоят буквы, которые обозначают, что именно экономится.

🔹Методы экономии памяти при инференсе:
— Квантование модели (WA): ужимаем тип данных для весов и активаций. В большинстве статьей так и написано: W4A16, что означает, что веса в 4 битах, активации в 16 битах.
— Flash Attention (A): оптимизируем вычисление внимания поблочными вычислениями в кэше GPU, попутно уменьшая сложность по памяти с квадратичной по длине последовательности до линейной.

🔹Дополнительные методы экономии памяти при обучении на одной карточке:
— Смешанная точность (A): имеем рабочую копию в 16 битах (bf16 или fp16), а также мастер-копию в 32 битах. Все операции делаем с рабочей копией и потом обновления весов вливаем в мастер-копию. Вы спросите: а где профит? А профит в том, что активации в 16 битах, а активации — это дофига памяти.
— Квантование оптимизатора (O): ужимаем тип данных для состояний оптимизатора. Чаще всего в 8 бит, перед собственно применением градиентов расквантовываем.
— Аккумуляция градиентов (AG): если мы хотим батч из больше чем одного примера, то A и G тоже раздуются. Но нам совсем не обязательно считать градиенты параллельно, поэтому мы можем считать их последовательно, суммировать, и только потом применять. Если это правильно😁 отмасштабировать, то это теоретически эквивалентно обучению на всём батче.
— Чекпоинты активаций (A): при обучении нам по-хорошему нужны активации на всех слоях, чтобы потом считать по ним градиенты. Но нам сначала нужно дойти до лосса, поэтому мы выкидываем часть промежуточных активаций и пересчитываем их заново на основе оставшихся чекпоинтов тогда, когда они нам реально понадобятся для подсчёта градиентов.
— Адаптеры (GO): основную модель вообще не трогаем, учим только новый маленький набор весов. Градиенты считаем только по нему, и на этом сильно экономим.

На практике используется буквально всё, везде и сразу 🤯
Типичный конфиг:

"model": {
"attn_implementation": "flash_attention_2", // вы поняли
"load_in_4bit": true, // квантование модели
...
},
"trainer": {
"gradient_accumulation_steps": 32, // аккумуляция градиентов
"bf16": true, // смешанная точность
"optim": "adamw_8bit", // квантование оптимизатора
"gradient_checkpointing": true, // чекпоинты активаций
...
},
"lora": {...} // адаптеры

BY Старший Авгур


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/senior_augur/348

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from us


Telegram Старший Авгур
FROM American