Telegram Group & Telegram Channel
Подборка материалов по статистике: обновление

Я давно составляла и размещала на канале рекомендуемые источники по статистике, однако кое-что устарело, плюс нашла еще классные материалы, так что решила обновить.

Книги
1) Статистика и котики из старой подборки пусть остаются, книга критикуется где-то за излишние упрощения, но для старта все еще неплохо.

2) Медико-биологическая статистика Гланца пусть тоже остается, хотя я сама недолюбливаю эту книгу, по крайней мере перевод на русский язык. В нем много небольших неточностей, например достоверность вместо статистической значимости, плюс переведено только старое издание, в котором нет упоминаний поправок на множественное тестирование FDR. Однако во многих чатах его советуют, поэтому оставляю в подборке.

3) Статистика для всех (Statistics in a nutshell) Сары Бослаф неплохая книга, однако в переводе большинство терминов насильно переведены на русский (иногда довольно неудачно), и плохо, что не дано исходного термина на английском, поскольку гуглить придется все равно так. Читать рекомендую самое свежее издание, благо найти в интернете легко.

4) Анализ данных и статистика в R Ивана Позднякова, что хорошо, автор постоянно обновляет часть по R (особенно по tidyverse) и дополняет часть по статистике, например многомерные методы. Материалы вплоть до обобщенной линейной модели доступны, написано хорошо, в общем рекомендую.

5) Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. В.К. Шитиков, Г.С. Розенберг. Остаются с предыдущей подборки.

Курсы

У меня в старой подборке есть однозначная рекомендация курсов Анатолия Карпова по статистике, однако после длительных дискуссий на тему качества этих курсов, я пересмотрела первую часть (Основы статистики).
Соглашусь, что действительно много неточностей как мелких, так и иногда довольно существенных в этом курсе. Следовательно, сейчас я не могу рекомендовать его, поскольку вышло много бесплатных и более качественных материалов (однако для 2013го года это был хороший продукт, так как русскоязычных курсов по статистике практически не было). Возможно, я сделаю более подробный разбор неточностей, которые я собрала, но пока не классифицировала и не оформила в пост.

Следовательно, рекомендую:
1) Курсы Марины Варфоломеевой: Линейные модели, дисперсионный и регрессионный анализ с использованием R, с еще несколькими курсами можно ознакомиться здесь. Наткнулась на материалы практически случайно, увидела что в других чатах тоже рекомендуют, сама кое-какие идеи оттуда брала для своих лекций (конечно с ссылкой на источник). Очень качественно и подробно разобрано практически все, с чем можно столкнуться в статистике, супер круто, что такие материалы есть в открытом доступе.

2) Курс Data Analysis with R Specialization на курсере, я сама не проходила, но много где советовали, программа очень солидная.

3) Платные курсы от Института биоинформатики и бластима. Ссылки кидать не буду, но они легко гуглятся, если кто-то не найдет, пишите в личку или в комменты. На бластиме я преподавала, как многие тут уже знают, могу ручаться за качество лекций и поддержки ассистентов. Курсы или точнее программы повышения квалификации от института биоинформатики тоже однозначно рекомендую, много общалась с людьми оттуда, делают очень качественный продукт.

Ютуб-каналы

1) StatQuest - отличный канал с короткими, но очень четкими разборами конкретных тем по статистике. У автора забавный стиль изложения, с приколами и всякими фразочками, сам он биоинформатик (а по первому образованию музыкант).
2) TileStats - пожалуй еще лучше чем первый канал (хоть и малоизвестный). Тоже формат коротких видео, где наглядно показывается применение формул, как это выглядит на графике и что означает. Абсолютно незаменим для подготовки собственных лекций, очень удачные идеи по визуализации сложных концептов. Стиль изложения более строгий, без забавных фразочек, но все равно максимально понятно.

Если что-то забыла из хороших материалов, пишите комментарии, буду стараться держать подборку лучших книг и курсов всегда обновленной!

#recommendation



group-telegram.com/stats_for_science/73
Create:
Last Update:

Подборка материалов по статистике: обновление

Я давно составляла и размещала на канале рекомендуемые источники по статистике, однако кое-что устарело, плюс нашла еще классные материалы, так что решила обновить.

Книги
1) Статистика и котики из старой подборки пусть остаются, книга критикуется где-то за излишние упрощения, но для старта все еще неплохо.

2) Медико-биологическая статистика Гланца пусть тоже остается, хотя я сама недолюбливаю эту книгу, по крайней мере перевод на русский язык. В нем много небольших неточностей, например достоверность вместо статистической значимости, плюс переведено только старое издание, в котором нет упоминаний поправок на множественное тестирование FDR. Однако во многих чатах его советуют, поэтому оставляю в подборке.

3) Статистика для всех (Statistics in a nutshell) Сары Бослаф неплохая книга, однако в переводе большинство терминов насильно переведены на русский (иногда довольно неудачно), и плохо, что не дано исходного термина на английском, поскольку гуглить придется все равно так. Читать рекомендую самое свежее издание, благо найти в интернете легко.

4) Анализ данных и статистика в R Ивана Позднякова, что хорошо, автор постоянно обновляет часть по R (особенно по tidyverse) и дополняет часть по статистике, например многомерные методы. Материалы вплоть до обобщенной линейной модели доступны, написано хорошо, в общем рекомендую.

5) Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. В.К. Шитиков, Г.С. Розенберг. Остаются с предыдущей подборки.

Курсы

У меня в старой подборке есть однозначная рекомендация курсов Анатолия Карпова по статистике, однако после длительных дискуссий на тему качества этих курсов, я пересмотрела первую часть (Основы статистики).
Соглашусь, что действительно много неточностей как мелких, так и иногда довольно существенных в этом курсе. Следовательно, сейчас я не могу рекомендовать его, поскольку вышло много бесплатных и более качественных материалов (однако для 2013го года это был хороший продукт, так как русскоязычных курсов по статистике практически не было). Возможно, я сделаю более подробный разбор неточностей, которые я собрала, но пока не классифицировала и не оформила в пост.

Следовательно, рекомендую:
1) Курсы Марины Варфоломеевой: Линейные модели, дисперсионный и регрессионный анализ с использованием R, с еще несколькими курсами можно ознакомиться здесь. Наткнулась на материалы практически случайно, увидела что в других чатах тоже рекомендуют, сама кое-какие идеи оттуда брала для своих лекций (конечно с ссылкой на источник). Очень качественно и подробно разобрано практически все, с чем можно столкнуться в статистике, супер круто, что такие материалы есть в открытом доступе.

2) Курс Data Analysis with R Specialization на курсере, я сама не проходила, но много где советовали, программа очень солидная.

3) Платные курсы от Института биоинформатики и бластима. Ссылки кидать не буду, но они легко гуглятся, если кто-то не найдет, пишите в личку или в комменты. На бластиме я преподавала, как многие тут уже знают, могу ручаться за качество лекций и поддержки ассистентов. Курсы или точнее программы повышения квалификации от института биоинформатики тоже однозначно рекомендую, много общалась с людьми оттуда, делают очень качественный продукт.

Ютуб-каналы

1) StatQuest - отличный канал с короткими, но очень четкими разборами конкретных тем по статистике. У автора забавный стиль изложения, с приколами и всякими фразочками, сам он биоинформатик (а по первому образованию музыкант).
2) TileStats - пожалуй еще лучше чем первый канал (хоть и малоизвестный). Тоже формат коротких видео, где наглядно показывается применение формул, как это выглядит на графике и что означает. Абсолютно незаменим для подготовки собственных лекций, очень удачные идеи по визуализации сложных концептов. Стиль изложения более строгий, без забавных фразочек, но все равно максимально понятно.

Если что-то забыла из хороших материалов, пишите комментарии, буду стараться держать подборку лучших книг и курсов всегда обновленной!

#recommendation

BY Статистика и R в науке и аналитике


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/stats_for_science/73

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children.
from us


Telegram Статистика и R в науке и аналитике
FROM American