Notice: file_put_contents(): Write of 1599 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 9791 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
сладко стянул | Telegram Webview: sweet_homotopy/1936 -
Telegram Group & Telegram Channel
сладко стянул
Как настроиться на праздник? Вспомнить, что конечнопорожденные модули над областями главных идеалов* устроены как никогда приятно: Теорема: пусть k — ОГИ, M — к.п. k-модуль. Тогда M раскладывается в прямую сумму циклических модулей: M = k/(d_1)⊕k/(d_2)⊕..⊕k/(d_n)…
А я давно хотел понять по гомологическим данным, "сколько* нужно образующих и соотношений" для копредставления связной ассоциативной k-алгебры A. Ответ простой, если k — поле: это размерности векторных пространств Tor_1^A(k,k) и Tor_2^A(k,k).

Сегодня я проверил, что он чуть-чуть обобщается:

Теорема. Пусть k — ОГИ, A — связная ассоциативная k-алгебра конечного типа. Тогда
(1) в любом однородном копредставлении алгебры A хотя бы gen(Tor_1) образующих и хотя бы rel(Tor_1)+gen(Tor_2) соотношений;
(2) существует однородное копредставление, в котором ровно gen(Tor_1) образующих и ровно rel(Tor_1)+gen(Tor_2) соотношений.

[при этом gen и rel можно считать покомпонентно: образующих степени i нужно ровно gen(Tor_{1,i}), и аналогично с соотношениями.]

Пример: для алгебры
A=T(x,y)/(5x³=8y², 21y=0),
deg(x)=2, deg(y)=3,
имеем
Tor_{1,2} = k,
Tor_{1,3} = k/(21),
Tor_{2,6} = k,
остальные Tor_{1,*}, Tor_{2,*} нулевые. Первое соотношение порождает Tor_2, второе даёт кручение в Tor_1.

Для произвольного k получаются оценки снизу и сверху, но пока не знаю, совпадают они или нет. Хотите сформулирую? Вопрос в предыдущем посте — примерно про это

*Для простоты я предполагаю, что алгебра имеет конечный тип, то есть каждая градуированная компонента — к.п. k-модуль. Тогда образующих/соотношений в каждой размерности нужно только конечное число, поэтому вопрос корректен. Да и градуированные k-модули Tor_1 и Tor_2 тоже имеют конечный тип



group-telegram.com/sweet_homotopy/1936
Create:
Last Update:

А я давно хотел понять по гомологическим данным, "сколько* нужно образующих и соотношений" для копредставления связной ассоциативной k-алгебры A. Ответ простой, если k — поле: это размерности векторных пространств Tor_1^A(k,k) и Tor_2^A(k,k).

Сегодня я проверил, что он чуть-чуть обобщается:

Теорема. Пусть k — ОГИ, A — связная ассоциативная k-алгебра конечного типа. Тогда
(1) в любом однородном копредставлении алгебры A хотя бы gen(Tor_1) образующих и хотя бы rel(Tor_1)+gen(Tor_2) соотношений;
(2) существует однородное копредставление, в котором ровно gen(Tor_1) образующих и ровно rel(Tor_1)+gen(Tor_2) соотношений.

[при этом gen и rel можно считать покомпонентно: образующих степени i нужно ровно gen(Tor_{1,i}), и аналогично с соотношениями.]

Пример: для алгебры
A=T(x,y)/(5x³=8y², 21y=0),
deg(x)=2, deg(y)=3,
имеем
Tor_{1,2} = k,
Tor_{1,3} = k/(21),
Tor_{2,6} = k,
остальные Tor_{1,*}, Tor_{2,*} нулевые. Первое соотношение порождает Tor_2, второе даёт кручение в Tor_1.

Для произвольного k получаются оценки снизу и сверху, но пока не знаю, совпадают они или нет. Хотите сформулирую? Вопрос в предыдущем посте — примерно про это

*Для простоты я предполагаю, что алгебра имеет конечный тип, то есть каждая градуированная компонента — к.п. k-модуль. Тогда образующих/соотношений в каждой размерности нужно только конечное число, поэтому вопрос корректен. Да и градуированные k-модули Tor_1 и Tor_2 тоже имеют конечный тип

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1936

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai.
from us


Telegram сладко стянул
FROM American