Telegram Group & Telegram Channel
сладко стянул
Дима Каледин, математик (старожилы русского интернета могут знать его имя по старому ЖЖ), опубликовал 600-страничную статью , в которой описывает новый подход к абстрактной теории гомотопии, над которым он работал много лет. Он предлагает этот подход в качестве…
Обзорный текст от Каледина, покороче:
https://arxiv.org/abs/2409.18378
вы туда все равно не полезете, захотелось запостить несколько отрывков из введения

1. (Чем плох "текущий подход" к гомотопическим оснащениям)

...Thus the current thinking goes along more-or-less the following lines.

(i) “Quillen-equivalent model categories have the same homotopy theory”; this is accepted as an article of faith and not discussed.
(ii) One constructs a “category of models” for enhanced small categories; this category of models is equipped with a model structure and produces all the desired data; an “enhanced category” is then simply defined as an object in the corresponding localized category.
(iii) Models are not unique at all, and neither are “categories of models”,
but one checks that they are all Quillen-equivalent, so see (i).

There are two obvious issues with this kind of thinking. Firstly, it is very
set-theoretical in nature and feels like a throwback to 19-th century – a category, something that should be a fundamental notion, is treated as a special type of a simplicial set, or “space”, whatever it is, or something like that. The idea of symmetry so dear to people like Grothendieck is thrown out of the window.
Secondly, a worse problem is the inherent circularity of the argument. Of all the avaliable models, it is best seen in the approach of [BK] based on relative categories.

By definition, a relative category is a small category C equipped with a class of maps W.
Barwick and Kan propose putting a model structure on the category of relative categories, and showing that it is Quillen-equivalent to all the other existing models. Then in this particular model, the result of localizing a category C with
respect to a class of maps W is the relative category ⟨C, W⟩. Effectively, it looks pretty much as if in this approach – and ipso facto in all the others, since they are all Quillen-equivalent – one "solves" the localization problem by declaring it solved.



group-telegram.com/sweet_homotopy/2029
Create:
Last Update:

Обзорный текст от Каледина, покороче:
https://arxiv.org/abs/2409.18378
вы туда все равно не полезете, захотелось запостить несколько отрывков из введения

1. (Чем плох "текущий подход" к гомотопическим оснащениям)

...Thus the current thinking goes along more-or-less the following lines.

(i) “Quillen-equivalent model categories have the same homotopy theory”; this is accepted as an article of faith and not discussed.
(ii) One constructs a “category of models” for enhanced small categories; this category of models is equipped with a model structure and produces all the desired data; an “enhanced category” is then simply defined as an object in the corresponding localized category.
(iii) Models are not unique at all, and neither are “categories of models”,
but one checks that they are all Quillen-equivalent, so see (i).

There are two obvious issues with this kind of thinking. Firstly, it is very
set-theoretical in nature and feels like a throwback to 19-th century – a category, something that should be a fundamental notion, is treated as a special type of a simplicial set, or “space”, whatever it is, or something like that. The idea of symmetry so dear to people like Grothendieck is thrown out of the window.
Secondly, a worse problem is the inherent circularity of the argument. Of all the avaliable models, it is best seen in the approach of [BK] based on relative categories.

By definition, a relative category is a small category C equipped with a class of maps W.
Barwick and Kan propose putting a model structure on the category of relative categories, and showing that it is Quillen-equivalent to all the other existing models. Then in this particular model, the result of localizing a category C with
respect to a class of maps W is the relative category ⟨C, W⟩. Effectively, it looks pretty much as if in this approach – and ipso facto in all the others, since they are all Quillen-equivalent – one "solves" the localization problem by declaring it solved.

BY сладко стянул




Share with your friend now:
group-telegram.com/sweet_homotopy/2029

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups.
from us


Telegram сладко стянул
FROM American