Telegram Group & Telegram Channel
Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)

Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?

Шаг 1: вкладываем Σ в R^{N+n} при N > n.

Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности
[Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.

Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением).
[На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит.
Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].

Если такого кобордизма нет — успех, наша сфера экзотическая.
Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ.
[Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]

Шаг 4: несколько вариантов в зависимости от n.
а) n чётно. Тогда сфера стандартная.
б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная.
в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая.
[в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.]
г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.

...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).

P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений
S^3 -> Σ -> S^4.
С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений
D^4 -> P -> S^4.



group-telegram.com/sweet_homotopy/1943
Create:
Last Update:

Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)

Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?

Шаг 1: вкладываем Σ в R^{N+n} при N > n.

Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности
[Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.

Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением).
[На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит.
Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].

Если такого кобордизма нет — успех, наша сфера экзотическая.
Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ.
[Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]

Шаг 4: несколько вариантов в зависимости от n.
а) n чётно. Тогда сфера стандартная.
б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная.
в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая.
[в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.]
г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.

...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).

P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений
S^3 -> Σ -> S^4.
С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений
D^4 -> P -> S^4.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1943

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. Founder Pavel Durov says tech is meant to set you free In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open.
from us


Telegram сладко стянул
FROM American