Telegram Group & Telegram Channel
Новая Llama 4, новый лидер Gemini 2.5 Pro, новые картинки от GPT

Рассказываем, что произошло в мире ИИ за последнее время.

Llama 4

Компания Meta выпустила четвертую версию своей open-source языковой модели LLama. Модель представлена в трех размерах: 2 трлн, 400 млрд и 109 млрд параметров. Все вариации используют архитектуру Mixture of Expert, благодаря которой во время генерации ответа модель задействует только малую долю всех параметров, необходимых для данного запроса. Используемые во время ответа параметры называются активными.

Модели Llama 4 Maverick (400 млрд параметров, 17 млрд активных) и Llama 4 Scout (109 млрд, 17 млрд активных) доступны уже сейчас. Флагманская версия Behemot с 2 трлн параметров (288 млрд активных) находится в процессе обучения. Ее промежуточная версия была использована при создании Maverick и Scout. Все модели поддерживают работу с изображениями.

По основным тестам на понимание языка, программирование и на умение решать логические и математические задачи Scout сопоставима с Gemma 3, Gemini 2.0 Flash-Lite и Mistral Small 3.1. Также Scout поддерживает работу с контентом длиной 10 млн токенов — это особенно полезно при работе с большими кодовыми базами, объемной документацией или видео.

Maverick по метрикам опережает Gemini 2.0 Flash и GPT-4o и сравнима с обновленной DeepSeek-V3 в задачах на логику и программирование. Behemot в задачах, связанных с естественными науками, показывает себя лучше Claude Sonnet 3.7, GPT-4.5 и Gemini 2.0 Pro.

Gemini 2.5 Pro — новый лидер среди LLM

Google представила экспериментальную версию своей новой языковой модели Gemini 2.5 Pro. По большинству ключевых метрик она значительно опережает другие ведущие модели, такие как o3-mini-high, DeepSeek-R1, Grok 3 и Claude Sonnet 3.7.

На платформе LMArena, где пользователи сравнивают различные LLM, Gemini 2.5 Pro занимает первое место (второе — у Llama 4 Maverick). Особенно высоко оцениваются ее возможности в написании программного кода.

Модель доступна через API. Предусмотрены два тарифа: бесплатный — с использованием пользовательских данных для обучения моделей Google и платный — без сохранения и использования данных.

Обновление GPT-4o 

С последним обновлением GPT-4o сильно улучшилось качество генерации изображений. Модель стала рисовать реалистичнее, лучше справляется с отрисовкой текста, а также гораздо эффективнее редактирует изображения — например, может добавлять или удалять объекты, а также применять различные стилизации (например, перерисовывать в стиле студии Ghibli).

Эти улучшения стали возможны благодаря нативной поддержке работы с изображениями. Ранее GPT, как и большинство других моделей, использовала отдельную нейросеть для работы с визуальными запросами. Например, для генерации изображения вызывалась специализированная модель DALL-E 3. Теперь же GPT-4o воспринимает текст и изображения как единый тип данных. Иными словами, она может как принимать изображения на вход, так и генерировать их в ответ, не используя другие модели. Подобный подход к работе с изображениями был также продемонстрирован в моделях Gemini 2.0.

Нативная поддержка изображений и аудио была анонсирована вместе с самой моделью GPT-4o — название «о» происходит от слова Omni, что означает «всё в одном» — универсальность и мультиформатность. Однако полноценный доступ к этим возможностям стал возможен только сейчас.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/sysblok/1154
Create:
Last Update:

Новая Llama 4, новый лидер Gemini 2.5 Pro, новые картинки от GPT

Рассказываем, что произошло в мире ИИ за последнее время.

Llama 4

Компания Meta выпустила четвертую версию своей open-source языковой модели LLama. Модель представлена в трех размерах: 2 трлн, 400 млрд и 109 млрд параметров. Все вариации используют архитектуру Mixture of Expert, благодаря которой во время генерации ответа модель задействует только малую долю всех параметров, необходимых для данного запроса. Используемые во время ответа параметры называются активными.

Модели Llama 4 Maverick (400 млрд параметров, 17 млрд активных) и Llama 4 Scout (109 млрд, 17 млрд активных) доступны уже сейчас. Флагманская версия Behemot с 2 трлн параметров (288 млрд активных) находится в процессе обучения. Ее промежуточная версия была использована при создании Maverick и Scout. Все модели поддерживают работу с изображениями.

По основным тестам на понимание языка, программирование и на умение решать логические и математические задачи Scout сопоставима с Gemma 3, Gemini 2.0 Flash-Lite и Mistral Small 3.1. Также Scout поддерживает работу с контентом длиной 10 млн токенов — это особенно полезно при работе с большими кодовыми базами, объемной документацией или видео.

Maverick по метрикам опережает Gemini 2.0 Flash и GPT-4o и сравнима с обновленной DeepSeek-V3 в задачах на логику и программирование. Behemot в задачах, связанных с естественными науками, показывает себя лучше Claude Sonnet 3.7, GPT-4.5 и Gemini 2.0 Pro.

Gemini 2.5 Pro — новый лидер среди LLM

Google представила экспериментальную версию своей новой языковой модели Gemini 2.5 Pro. По большинству ключевых метрик она значительно опережает другие ведущие модели, такие как o3-mini-high, DeepSeek-R1, Grok 3 и Claude Sonnet 3.7.

На платформе LMArena, где пользователи сравнивают различные LLM, Gemini 2.5 Pro занимает первое место (второе — у Llama 4 Maverick). Особенно высоко оцениваются ее возможности в написании программного кода.

Модель доступна через API. Предусмотрены два тарифа: бесплатный — с использованием пользовательских данных для обучения моделей Google и платный — без сохранения и использования данных.

Обновление GPT-4o 

С последним обновлением GPT-4o сильно улучшилось качество генерации изображений. Модель стала рисовать реалистичнее, лучше справляется с отрисовкой текста, а также гораздо эффективнее редактирует изображения — например, может добавлять или удалять объекты, а также применять различные стилизации (например, перерисовывать в стиле студии Ghibli).

Эти улучшения стали возможны благодаря нативной поддержке работы с изображениями. Ранее GPT, как и большинство других моделей, использовала отдельную нейросеть для работы с визуальными запросами. Например, для генерации изображения вызывалась специализированная модель DALL-E 3. Теперь же GPT-4o воспринимает текст и изображения как единый тип данных. Иными словами, она может как принимать изображения на вход, так и генерировать их в ответ, не используя другие модели. Подобный подход к работе с изображениями был также продемонстрирован в моделях Gemini 2.0.

Нативная поддержка изображений и аудио была анонсирована вместе с самой моделью GPT-4o — название «о» происходит от слова Omni, что означает «всё в одном» — универсальность и мультиформатность. Однако полноценный доступ к этим возможностям стал возможен только сейчас.

🤖 «Системный Блокъ» @sysblok

BY Системный Блокъ




Share with your friend now:
group-telegram.com/sysblok/1154

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

NEWS "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%.
from us


Telegram Системный Блокъ
FROM American