Telegram Group & Telegram Channel
«ریاضی و ما: یادداشت دی ماه رئیس انجمن ریاضی ایران»

اخیرأ قضیه‌ ای مقدماتی  در نظریه اعداد ثابت  کرده ام و آن را به چاپ رسانده ام  با توجه‌ ‌به‌ شکل  آن  که‌‌ در ریاضی نادر است مشغول سر به سر گذاشتن  با AI  بوده ام. با سئوال کردن در Chatgpt اینکه  آیا دو قضیه در ریاضی وجود دارند‌که هر یک تعمیم‌  دیگری  باشد ؟  حسابی AI را  را پی نخود سیاه فرستادم‌  چون تا آنجا که‌ من میدانم وجود چنین دو‌قضیه ای نادرند و‌حداقل در منابع عنوان نشده اند حتی  دو قضیه‌ ای که‌  معادل باشند لزومأ  تعمیم یک دیگر  نیستند و بهر حال با بحثی که AI میکرد مرا وادار کرد که قضیه خود را به اشتراک بگذارم . می دانیم که فرما  اکثر قضایای خود را اثبات نمیکرد مثلأ قضیه کوچک‌ فرما را اولین بار اویلر با استقراء اثبات کرد  و بعدأ او با معرفی تابع حسابی خود  قضیه‌ فی‌ اویلر را‌ ثابت کرد که‌ در حالت خاص  قضیه‌ کوچک فرما را بدست می دهد، البته همه از کار برد و اهمیت  قضیه فی اویلر در کریپتو گرافی هم آگاه اند.  از آن به بعد  قضیه فی اویلر  در تمام کتاب های  مقدماتی نظریه‌  اعداد ظاهر شده است و بلافاصله در زیر آن‌ به درستی تأکید میشود که این قضیه تعمیم  قضیه کوچک فرما است . اخیرأ موفق شدم  در مجله The Mathematical Gazette July 2024 نشان دهم‌ که در حقیقت این دو قضیه یعنی قضیه فرما و قضیه ا‌ویلر تعمیم یک دیگرند که از زمان فرما-اویلر  تا‌ ظاهر شدن این قضیه  من از آن غفلت شده بود  و در حقیقت قضیه کوچک فرما را با اهمیت تر می‌کند ‌.  اعتقاد راسخ دارم بیان نکردن بیشتر  قضایا در  ریاضی  به شکل
«اگر و تنها اگر»  در منابع باعث شده  که ما این گونه قضایا را عمیق نفهمیم و فقط آنها را حداکثر خوب یاد بگیریم و کاری به چرائی ها  در بیان قضایا و اثبات ها نداشته باشیم  . اولین بار در سی ‌و سومین کنفرانس ریاضی کشور در مشهد مفصل به این مهم تحت عنوان : عکس نتایج را باید بر عکس کذشتگان  در یابیم  ‌پرداخته ام. ‌ آنجا  ادعای بزرگی کردم و هنوز هم معتقد به آن‌ هستم که  از زمان اقلیدس تا آن زمان کسی به این موضوع  اشاره ای نکرده بود و در حقیقت خود اقلیدس  این طرز فکر نا قص یعنی
«اگرP آنگاه Q»را  بجای «P اگر و تنها اگر Q»  در صورت امکان برای بیان نتایج مان در ریاضی در ما نهادینه کرده  است و شاید این طرز فکر بوده که  باعث  شده بود
به قضیه من از زمان  فرما - اویلر
کسی اصلأ فکر نکند زیرا روش اثبات من کاملأ مقدماتی و مربوط به آن دوران  است. اخیرا  در مقاله ام با عنوان
«اگر و  تنها  اگر در ریاضی » هم در مجله    ریاضی  
EMS 2023(European Mathematical Society Magazine)
مربوط به انجمن ریاضی اروپا که open access است  به اهمیت این موضوع مفصل  پرداخته ام و با مثال زدن  اشاره کرده ام که چگونه غفلت در بکار نبردن «اگر و تنها اگر» در بیان بعضی از قضایا و مسائل ممکن است باعث گمراهی بعضی از افراد و حتی ریاضی دانانی برجسته نظیر Terence Tao  در مواردی که‌  به چنین نتایجی می پردازند شود.



group-telegram.com/IranianMathematicalSociety/3022
Create:
Last Update:

«ریاضی و ما: یادداشت دی ماه رئیس انجمن ریاضی ایران»

اخیرأ قضیه‌ ای مقدماتی  در نظریه اعداد ثابت  کرده ام و آن را به چاپ رسانده ام  با توجه‌ ‌به‌ شکل  آن  که‌‌ در ریاضی نادر است مشغول سر به سر گذاشتن  با AI  بوده ام. با سئوال کردن در Chatgpt اینکه  آیا دو قضیه در ریاضی وجود دارند‌که هر یک تعمیم‌  دیگری  باشد ؟  حسابی AI را  را پی نخود سیاه فرستادم‌  چون تا آنجا که‌ من میدانم وجود چنین دو‌قضیه ای نادرند و‌حداقل در منابع عنوان نشده اند حتی  دو قضیه‌ ای که‌  معادل باشند لزومأ  تعمیم یک دیگر  نیستند و بهر حال با بحثی که AI میکرد مرا وادار کرد که قضیه خود را به اشتراک بگذارم . می دانیم که فرما  اکثر قضایای خود را اثبات نمیکرد مثلأ قضیه کوچک‌ فرما را اولین بار اویلر با استقراء اثبات کرد  و بعدأ او با معرفی تابع حسابی خود  قضیه‌ فی‌ اویلر را‌ ثابت کرد که‌ در حالت خاص  قضیه‌ کوچک فرما را بدست می دهد، البته همه از کار برد و اهمیت  قضیه فی اویلر در کریپتو گرافی هم آگاه اند.  از آن به بعد  قضیه فی اویلر  در تمام کتاب های  مقدماتی نظریه‌  اعداد ظاهر شده است و بلافاصله در زیر آن‌ به درستی تأکید میشود که این قضیه تعمیم  قضیه کوچک فرما است . اخیرأ موفق شدم  در مجله The Mathematical Gazette July 2024 نشان دهم‌ که در حقیقت این دو قضیه یعنی قضیه فرما و قضیه ا‌ویلر تعمیم یک دیگرند که از زمان فرما-اویلر  تا‌ ظاهر شدن این قضیه  من از آن غفلت شده بود  و در حقیقت قضیه کوچک فرما را با اهمیت تر می‌کند ‌.  اعتقاد راسخ دارم بیان نکردن بیشتر  قضایا در  ریاضی  به شکل
«اگر و تنها اگر»  در منابع باعث شده  که ما این گونه قضایا را عمیق نفهمیم و فقط آنها را حداکثر خوب یاد بگیریم و کاری به چرائی ها  در بیان قضایا و اثبات ها نداشته باشیم  . اولین بار در سی ‌و سومین کنفرانس ریاضی کشور در مشهد مفصل به این مهم تحت عنوان : عکس نتایج را باید بر عکس کذشتگان  در یابیم  ‌پرداخته ام. ‌ آنجا  ادعای بزرگی کردم و هنوز هم معتقد به آن‌ هستم که  از زمان اقلیدس تا آن زمان کسی به این موضوع  اشاره ای نکرده بود و در حقیقت خود اقلیدس  این طرز فکر نا قص یعنی
«اگرP آنگاه Q»را  بجای «P اگر و تنها اگر Q»  در صورت امکان برای بیان نتایج مان در ریاضی در ما نهادینه کرده  است و شاید این طرز فکر بوده که  باعث  شده بود
به قضیه من از زمان  فرما - اویلر
کسی اصلأ فکر نکند زیرا روش اثبات من کاملأ مقدماتی و مربوط به آن دوران  است. اخیرا  در مقاله ام با عنوان
«اگر و  تنها  اگر در ریاضی » هم در مجله    ریاضی  
EMS 2023(European Mathematical Society Magazine)
مربوط به انجمن ریاضی اروپا که open access است  به اهمیت این موضوع مفصل  پرداخته ام و با مثال زدن  اشاره کرده ام که چگونه غفلت در بکار نبردن «اگر و تنها اگر» در بیان بعضی از قضایا و مسائل ممکن است باعث گمراهی بعضی از افراد و حتی ریاضی دانانی برجسته نظیر Terence Tao  در مواردی که‌  به چنین نتایجی می پردازند شود.

BY انجمن ریاضی ایران (IMS)


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/IranianMathematicalSociety/3022

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender.
from vn


Telegram انجمن ریاضی ایران (IMS)
FROM American