Telegram Group & Telegram Channel
Классный отчет со 2 места прошедшей соревы https://www.kaggle.com/competitions/ariel-data-challenge-2024/discussion/543853

В основе лежит Gaussian Process, который есть даже в sklearn, но медленный. Если у нас есть зашумленный ряд или многомерные данные, GP отвечает на вопрос не об истинных значениях в каждой точке, а к какому распределению она принадлежит, опираясь на наблюдаемые значения соседей. Метод байесовский потому что рассматривает все наблюдаемые точки, как случайные величины из многомерного нормального распределения.

GP предполагает, что у близких точек близкие значения, т.е. сигнал в каком-то смысле гладкий. Шум состоит из белого шума равномерного распределения, амплитуду которого надо знать заранее, а так же частотных скорелированных шумов. Каждое наблюдение это истинное значение + шум, поэтому усреднив соседние точки с учетом их корреляций между собой, мы можем лучше оценить их значения. Например, если рассмотреть три точки подряд, значения которых близки, а у третьей сильно отличается, то 3 получит гораздо меньший вес.

Ковариационная функция (ядро) бывает разная, обычно берут радиальную, задавая радиус на котором мы считаем, что локально изменения не сильные. GP в каком-то смысле обучается на данных локально, для каждой окрестности подбирая оптимальные веса восстановления сигнала по соседям.

Я потратил часов 10 в этом соревновании чтобы завести этот метод, обнаружил магию, что он довольно далеко может увести наблюдаемые данные в какой-то локальной области, при этом дальнейшие части пайплайна на этом участке дают более точный результат. Но я бросил, потому что результаты получались так себе, а что шевелить понятия не было. Так что на практике метод сильный, но, возможно придется повозиться, чтобы получить хороший результат.

Бонус: GP на JAX



group-telegram.com/abacabadabacaba404/66
Create:
Last Update:

Классный отчет со 2 места прошедшей соревы https://www.kaggle.com/competitions/ariel-data-challenge-2024/discussion/543853

В основе лежит Gaussian Process, который есть даже в sklearn, но медленный. Если у нас есть зашумленный ряд или многомерные данные, GP отвечает на вопрос не об истинных значениях в каждой точке, а к какому распределению она принадлежит, опираясь на наблюдаемые значения соседей. Метод байесовский потому что рассматривает все наблюдаемые точки, как случайные величины из многомерного нормального распределения.

GP предполагает, что у близких точек близкие значения, т.е. сигнал в каком-то смысле гладкий. Шум состоит из белого шума равномерного распределения, амплитуду которого надо знать заранее, а так же частотных скорелированных шумов. Каждое наблюдение это истинное значение + шум, поэтому усреднив соседние точки с учетом их корреляций между собой, мы можем лучше оценить их значения. Например, если рассмотреть три точки подряд, значения которых близки, а у третьей сильно отличается, то 3 получит гораздо меньший вес.

Ковариационная функция (ядро) бывает разная, обычно берут радиальную, задавая радиус на котором мы считаем, что локально изменения не сильные. GP в каком-то смысле обучается на данных локально, для каждой окрестности подбирая оптимальные веса восстановления сигнала по соседям.

Я потратил часов 10 в этом соревновании чтобы завести этот метод, обнаружил магию, что он довольно далеко может увести наблюдаемые данные в какой-то локальной области, при этом дальнейшие части пайплайна на этом участке дают более точный результат. Но я бросил, потому что результаты получались так себе, а что шевелить понятия не было. Так что на практике метод сильный, но, возможно придется повозиться, чтобы получить хороший результат.

Бонус: GP на JAX

BY adapt compete evolve or die




Share with your friend now:
group-telegram.com/abacabadabacaba404/66

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. For tech stocks, “the main thing is yields,” Essaye said.
from vn


Telegram adapt compete evolve or die
FROM American