Мою новую статью приняли на ACL 🎉. Мы обнаружили, что большинство слоёв языковых моделей линейны на 99%! Это значит, что из любого слоя LLM можно выкинуть этэншн, нормализацию и даже feed-forward с активацией, оставив лишь один nn.Linear(), а модель будет работать, будто бы ничего не поменялось!
Такая неадекватная линейность наблюдается во всех трансформерах-декодерах (GPT, Llama, Mistral, и тд.). Мы предполагаем, что это связано с feature triggering режимом, то есть нелинейность "вспыхивает" на очень небольшом количестве важных токенов (что-то похожее было в статье Deja Vu). Поэтому совсем уж много слоёв таким образом заменить нельзя, нелинейность хоть сама по себе и крошечная, но её влияние очень быстро накапливается.
Ещё из интересных наблюдений — по мере претрейна нелинейность растёт, а во время файнтюнинга (или RLHF) она всегда падает. Исходя из этого, мы придумали регуляризацию, которая немножко усиливает нелинейность и бустит метрики на претрейне.
P.S. Вместе с кодом для оценки линейности слоёв трансформеров мы выкладываем и код к прошлой нашей статье про анизотропию и внутреннюю размерность.
Мою новую статью приняли на ACL 🎉. Мы обнаружили, что большинство слоёв языковых моделей линейны на 99%! Это значит, что из любого слоя LLM можно выкинуть этэншн, нормализацию и даже feed-forward с активацией, оставив лишь один nn.Linear(), а модель будет работать, будто бы ничего не поменялось!
Такая неадекватная линейность наблюдается во всех трансформерах-декодерах (GPT, Llama, Mistral, и тд.). Мы предполагаем, что это связано с feature triggering режимом, то есть нелинейность "вспыхивает" на очень небольшом количестве важных токенов (что-то похожее было в статье Deja Vu). Поэтому совсем уж много слоёв таким образом заменить нельзя, нелинейность хоть сама по себе и крошечная, но её влияние очень быстро накапливается.
Ещё из интересных наблюдений — по мере претрейна нелинейность растёт, а во время файнтюнинга (или RLHF) она всегда падает. Исходя из этого, мы придумали регуляризацию, которая немножко усиливает нелинейность и бустит метрики на претрейне.
P.S. Вместе с кодом для оценки линейности слоёв трансформеров мы выкладываем и код к прошлой нашей статье про анизотропию и внутреннюю размерность.
These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation.
from vn