Telegram Group & Telegram Channel
⚡️Как ускорить диффузию ч1 - Model Distillation

Начинаю серию постов про основные методы для ускорения диффузионных моделей, т.к это один из моих главных научных интересов. В первой части поговорим про дистилляцию. Говорить будем в разрезе text2img, но многие из этих техник могут применяться и для видео.

Мы знаем, что диффузии из коробки требуется много прогонов по сети (шагов), чтобы сгенерить картинку во время инференса. Поэтому появился целый пласт работ, которые выдают вообще адовые ускорения. Ну такой вот примерно рецепт усредненный для дистиляции text2image моделей, потому что вариаций масса: берешь огромную модель учителя, которая генерит медленно, но качественно, и учишь студента предсказывать за 1-4 шага выходы учителя, полученные за много шагов. Магическим образом это работает. Но есть много нюансов, понять которые можно из следующих работ:

Model Distillation:
Guidance and Progressive Distillation - классика жанра, где впервые провели дистилляцию до 4 шагов.
Consistency Models - Более хитрая дистилляция, где на каждом шагу пытаемся предсказать конечный результат.
Improved Techniques for Training Consistency Models - то же самое, но с улучшенным расписанием шагов
SnapFusion - пруним архитектуру Unet и дистиллируем в меньшее число шагов с помощью Progressive Distillation.
InstaFlow - формулируем диффузии как линейный Flow Matching и дистиллируем в несколько раундов, пока не достигнем генерации за один шаг.
UfoGen - это Diffusion + GAN, где дискриминатор инициализируется UNet-ом диффузии.
Adversarial Diffusion Distillation (SDXL-Turbo) это дистилляция Diffusion + GAN, но дискриминатор тут основан на фичах DINOv2.
Latent Adversarial Diffusion Distillation (SD3 Turbo) — тоже самое только в latent фичах.
Imagine Flash — моя статья о дистилляции в 3 шага.

>> Читать часть 2

#ликбез
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2387
Create:
Last Update:

⚡️Как ускорить диффузию ч1 - Model Distillation

Начинаю серию постов про основные методы для ускорения диффузионных моделей, т.к это один из моих главных научных интересов. В первой части поговорим про дистилляцию. Говорить будем в разрезе text2img, но многие из этих техник могут применяться и для видео.

Мы знаем, что диффузии из коробки требуется много прогонов по сети (шагов), чтобы сгенерить картинку во время инференса. Поэтому появился целый пласт работ, которые выдают вообще адовые ускорения. Ну такой вот примерно рецепт усредненный для дистиляции text2image моделей, потому что вариаций масса: берешь огромную модель учителя, которая генерит медленно, но качественно, и учишь студента предсказывать за 1-4 шага выходы учителя, полученные за много шагов. Магическим образом это работает. Но есть много нюансов, понять которые можно из следующих работ:

Model Distillation:
Guidance and Progressive Distillation - классика жанра, где впервые провели дистилляцию до 4 шагов.
Consistency Models - Более хитрая дистилляция, где на каждом шагу пытаемся предсказать конечный результат.
Improved Techniques for Training Consistency Models - то же самое, но с улучшенным расписанием шагов
SnapFusion - пруним архитектуру Unet и дистиллируем в меньшее число шагов с помощью Progressive Distillation.
InstaFlow - формулируем диффузии как линейный Flow Matching и дистиллируем в несколько раундов, пока не достигнем генерации за один шаг.
UfoGen - это Diffusion + GAN, где дискриминатор инициализируется UNet-ом диффузии.
Adversarial Diffusion Distillation (SDXL-Turbo) это дистилляция Diffusion + GAN, но дискриминатор тут основан на фичах DINOv2.
Latent Adversarial Diffusion Distillation (SD3 Turbo) — тоже самое только в latent фичах.
Imagine Flash — моя статья о дистилляции в 3 шага.

>> Читать часть 2

#ликбез
@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2387

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips.
from vn


Telegram эйай ньюз
FROM American