Notice: file_put_contents(): Write of 13292 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/2662 -
Telegram Group & Telegram Channel
Deepseek V2: топ за свои деньги

Что-то в опенсорс в последнее время попадает прям поток MoE моделей, вот и DeepSeek V2 из них. 236B параметров, из которых 21B - активных. По качеству - между Mixtral 8x22B и LLaMa 3 70B, но при этом в 2-4 раза дешевле этих моделей у самых дешёвых провайдеров, всего лишь 14 центов за млн токенов инпута и 28 за млн токенов на выход. Лицензия модели MIT, так что до конца недели будет штук пять разных провайдеров дешевле этого.

Главная особенность - Multi-Head Latent Attention (MLA). От обычного Multi-Head Attention (MHA) он отличается механизмом сжатия KV Cache, где он хранится как низкоранговая матрица, откуда и куда проецируется когда его нужно использовать или обновить. Из экспериментов, по качеству это работает лучше MHA, при этом используя в 4 раза меньше памяти чем обычные Grouped Query Attention конфиги. Из нюансов - авторам пришлось изобрести новый вариант RoPE чтобы это всё заработало, так как обычный RoPE такого количества линейных проекций туда и назад переживать решительно отказывается. Если честно, я не совсем понимаю почему это работает и почему нету абляций для dense моделей, но интересно как это будет сочетаться с квантизацией KV кэша.

Размер контекста - 128k. Тренировали это всё на 8 триллионах токенов в течении 1.5 миллиона часов на H800 (китайская версия H100). Это уровень компьюта тренировки LLaMa 3 8B и примерно в 3 раза больше чем у Snowflake Arctic.

У модели 162 эксперта, из которых 2 перманентно активные, а из остальных 160-ти на каждый токен выбирается 6. Хочу отметить что эксперты там крайне маленькие – у каждого размерность всего 1536.

Соотношение цены и качества прекрасное, если все подтвердится на ChatBot Arena.

Из минусов — размер. В BF16 для локального инференса нужно 8x A100 с 80GB VRAM. Вся надежда на квантизацию.

Демка
Пейпер
Базовая модель
Чат версия

@ai_newz



group-telegram.com/ai_newz/2662
Create:
Last Update:

Deepseek V2: топ за свои деньги

Что-то в опенсорс в последнее время попадает прям поток MoE моделей, вот и DeepSeek V2 из них. 236B параметров, из которых 21B - активных. По качеству - между Mixtral 8x22B и LLaMa 3 70B, но при этом в 2-4 раза дешевле этих моделей у самых дешёвых провайдеров, всего лишь 14 центов за млн токенов инпута и 28 за млн токенов на выход. Лицензия модели MIT, так что до конца недели будет штук пять разных провайдеров дешевле этого.

Главная особенность - Multi-Head Latent Attention (MLA). От обычного Multi-Head Attention (MHA) он отличается механизмом сжатия KV Cache, где он хранится как низкоранговая матрица, откуда и куда проецируется когда его нужно использовать или обновить. Из экспериментов, по качеству это работает лучше MHA, при этом используя в 4 раза меньше памяти чем обычные Grouped Query Attention конфиги. Из нюансов - авторам пришлось изобрести новый вариант RoPE чтобы это всё заработало, так как обычный RoPE такого количества линейных проекций туда и назад переживать решительно отказывается. Если честно, я не совсем понимаю почему это работает и почему нету абляций для dense моделей, но интересно как это будет сочетаться с квантизацией KV кэша.

Размер контекста - 128k. Тренировали это всё на 8 триллионах токенов в течении 1.5 миллиона часов на H800 (китайская версия H100). Это уровень компьюта тренировки LLaMa 3 8B и примерно в 3 раза больше чем у Snowflake Arctic.

У модели 162 эксперта, из которых 2 перманентно активные, а из остальных 160-ти на каждый токен выбирается 6. Хочу отметить что эксперты там крайне маленькие – у каждого размерность всего 1536.

Соотношение цены и качества прекрасное, если все подтвердится на ChatBot Arena.

Из минусов — размер. В BF16 для локального инференса нужно 8x A100 с 80GB VRAM. Вся надежда на квантизацию.

Демка
Пейпер
Базовая модель
Чат версия

@ai_newz

BY эйай ньюз





Share with your friend now:
group-telegram.com/ai_newz/2662

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices.
from vn


Telegram эйай ньюз
FROM American